Tuesday, February 21, 2023

Brazil Suspected case of Bovine Spongiform Encephalopathy

Brazil Suspected case of Bovine Spongiform Encephalopathy

COMUNICADO

Caso suspeito de Encefalopatia Espongiforme Bovina 

para Copiar para área de transferência Publicado em 20/02/2023 15h36 

Atualizado em 20/02/2023 15h39 O

Ministério da Agricultura e Pecuária (Mapa) informa que, acerca do caso suspeito de Encefalopatia Espongiforme Bovina (Mal da "vaca louca"), todas as medidas estão sendo adotadas pelos governos. 

A suspeita já foi submetida a análise laboratorial para a confirmação ou não e, a partir do resultado, serão aplicadas imediatamente as ações cabíveis.

Informações à Imprensa

imprensa@agro.gov.br

=====

COMMUNICATE

Suspected case of bovine spongiform encephalopathy

to Copy to clipboard Posted on 2/20/2023 3:36 PM

Updated on 02/20/2023 3:39 pm The

Ministry of Agriculture and Livestock (MAPA) informs that, regarding the suspected case of Bovine Spongiform Encephalopathy ("Mad Cow Disease"), all measures are being adopted by governments.

The suspicion has already been submitted to laboratory analysis for confirmation or not and, based on the result, the appropriate actions will be applied immediately. 



''Atypical BSE, on the hand, is a naturally and sporadically occurring form, which are believed to occur in all cattle populations at a very low rate.''

LOL!

you need to update your science imo...

kind regards, terry

OIE Conclusions on transmissibility of atypical BSE among cattle

Given that cattle have been successfully infected by the oral route, at least for L-BSE, it is reasonable to conclude that atypical BSE is potentially capable of being recycled in a cattle population if cattle are exposed to contaminated feed. In addition, based on reports of atypical BSE from several countries that have not had C-BSE, it appears likely that atypical BSE would arise as a spontaneous disease in any country, albeit at a very low incidence in old cattle. In the presence of livestock industry practices that would allow it to be recycled in the cattle feed chain, it is likely that some level of exposure and transmission may occur. As a result, since atypical BSE can be reasonably considered to pose a potential background level of risk for any country with cattle, the recycling of both classical and atypical strains in the cattle and broader ruminant populations should be avoided. 


Annex 7 (contd) AHG on BSE risk assessment and surveillance/March 2019

34 Scientific Commission/September 2019

3. Atypical BSE

The Group discussed and endorsed with minor revisions an overview of relevant literature on the risk of atypical BSE being recycled in a cattle population and its zoonotic potential that had been prepared ahead of the meeting by one expert from the Group. This overview is provided as Appendix IV and its main conclusions are outlined below. With regard to the risk of recycling of atypical BSE, recently published research confirmed that the L-type BSE prion (a type of atypical BSE prion) may be orally transmitted to calves1 . In light of this evidence, and the likelihood that atypical BSE could arise as a spontaneous disease in any country, albeit at a very low incidence, the Group was of the opinion that it would be reasonable to conclude that atypical BSE is potentially capable of being recycled in a cattle population if cattle were to be exposed to contaminated feed. Therefore, the recycling of atypical strains in cattle and broader ruminant populations should be avoided.

The Group acknowledged the challenges in demonstrating the zoonotic transmission of atypical strains of BSE in natural exposure scenarios. Overall, the Group was of the opinion that, at this stage, it would be premature to reach a conclusion other than that atypical BSE poses a potential zoonotic risk that may be different between atypical strains.

4. Definitions of meat-and-bone meal (MBM) and greaves

snip...

REFERENCES

SNIP...END SEE FULL TEXT;


Consumption of L-BSE–contaminated feed may pose a risk for oral transmission of the disease agent to cattle.


Thus, it is imperative to maintain measures that prevent the entry of tissues from cattle possibly infected with the agent of L-BSE into the food chain.


We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period, with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold longe incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014), is the third potentially zoonotic PD (with BSE and L-type BSE), thus questioning the origin of human sporadic cases. We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health.


2.3.2. New evidence on the zoonotic potential of atypical BSE and atypical scrapie prion strains

Olivier Andreoletti, INRA Research Director, Institut National de la Recherche Agronomique (INRA) – École Nationale Vétérinaire de Toulouse (ENVT), invited speaker, presented the results of two recently published scientific articles of interest, of which he is co-author:

‘Radical Change in Zoonotic Abilities of Atypical BSE Prion Strains as Evidenced by Crossing of Sheep Species Barrier in Transgenic Mice’ (MarinMoreno et al., 2020) and ‘The emergence of classical BSE from atypical/Nor98 scrapie’ (Huor et al., 2019).

In the first experimental study, H-type and L-type BSE were inoculated into transgenic mice expressing all three genotypes of the human PRNP at codon 129 and into adapted into ARQ and VRQ transgenic sheep mice. The results showed the alterations of the capacities to cross the human barrier species (mouse model) and emergence of sporadic CJD agents in Hu PrP expressing mice: type 2 sCJD in homozygous TgVal129 VRQ-passaged L-BSE, and type 1 sCJD in homozygous TgVal 129 and TgMet129 VRQ-passaged H-BSE. 


This study demonstrates that the H-type BSE agent is transmissible by the oronasal route. These results reinforce the need for ongoing surveillance for classical and atypical BSE to minimize the risk of potentially infectious tissues entering the animal or human food chains.


***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***

Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.


O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations 

Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France 

Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases). 

Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods. 

*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period, 

***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014), 

***is the third potentially zoonotic PD (with BSE and L-type BSE), 

***thus questioning the origin of human sporadic cases. 

We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health. 

=============== 

***thus questioning the origin of human sporadic cases*** 

=============== 

***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals. 

============== 

PRION 2015 CONFERENCE


***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. 

***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 


PRION 2016 TOKYO

Saturday, April 23, 2016

SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016

Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online

Taylor & Francis

Prion 2016 Animal Prion Disease Workshop Abstracts

WS-01: Prion diseases in animals and zoonotic potential

Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 


Title: Transmission of scrapie prions to primate after an extended silent incubation period) 

*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS. 

*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated. 

*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains. 


Sunday, January 10, 2021 

APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087] Singeltary Submission June 17, 2019

APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087] Singeltary Submission

Greetings APHIS et al, 

I would kindly like to comment on APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087], and my comments are as follows, with the latest peer review and transmission studies as references of evidence.

THE OIE/USDA BSE Minimal Risk Region MRR is nothing more than free pass to import and export the Transmissible Spongiform Encephalopathy TSE Prion disease. December 2003, when the USDA et al lost it's supposedly 'GOLD CARD' ie BSE FREE STATUS (that was based on nothing more than not looking and not finding BSE), once the USA lost it's gold card BSE Free status, the USDA OIE et al worked hard and fast to change the BSE Geographical Risk Statuses i.e. the BSE GBR's, and replaced it with the BSE MRR policy, the legal tool to trade mad cow type disease TSE Prion Globally. The USA is doing just what the UK did, when they shipped mad cow disease around the world, except with the BSE MRR policy, it's now legal. 

Also, the whole concept of the BSE MRR policy is based on a false pretense, that atypical BSE is not transmissible, and that only typical c-BSE is transmissible via feed. This notion that atypical BSE TSE Prion is an old age cow disease that is not infectious is absolutely false, there is NO science to show this, and on the contrary, we now know that atypical BSE will transmit by ORAL ROUTES, but even much more concerning now, recent science has shown that Chronic Wasting Disease CWD TSE Prion in deer and elk which is rampant with no stopping is sight in the USA, and Scrapie TSE Prion in sheep and goat, will transmit to PIGS by oral routes, this is our worst nightmare, showing even more risk factors for the USA FDA PART 589 TSE PRION FEED ban. 

The FDA PART 589 TSE PRION FEED ban has failed terribly bad, and is still failing, since August 1997. there is tonnage and tonnage of banned potential mad cow feed that went into commerce, and still is, with one decade, 10 YEARS, post August 1997 FDA PART 589 TSE PRION FEED ban, 2007, with 10,000,000 POUNDS, with REASON, Products manufactured from bulk feed containing blood meal that was cross contaminated with prohibited meat and bone meal and the labeling did not bear cautionary BSE statement. you can see all these feed ban warning letters and tonnage of mad cow feed in commerce, year after year, that is not accessible on the internet anymore like it use to be, you can see history of the FDA failure August 1997 FDA PART 589 TSE PRION FEED ban here, but remember this, we have a new outbreak of TSE Prion disease in a new livestock species, the camel, and this too is very worrisome.

WITH the OIE and the USDA et al weakening the global TSE prion surveillance, by not classifying the atypical Scrapie as TSE Prion disease, and the notion that they want to do the same thing with typical scrapie and atypical BSE, it's just not scientific.

WE MUST abolish the BSE MRR policy, go back to the BSE GBR risk assessments by country, and enhance them to include all strains of TSE Prion disease in all species. With Chronic Wasting CWD TSE Prion disease spreading in Europe, now including, Norway, Finland, Sweden, also in Korea, Canada and the USA, and the TSE Prion in Camels, the fact the the USA is feeding potentially CWD, Scrapie, BSE, typical and atypical, to other animals, and shipping both this feed and or live animals or even grains around the globe, potentially exposed or infected with the TSE Prion. this APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087], under it's present definition, does NOT show the true risk of the TSE Prion in any country. as i said, it's nothing more than a legal tool to trade the TSE Prion around the globe, nothing but ink on paper.

AS long as the BSE MRR policy stays in effect, TSE Prion disease will continued to be bought and sold as food for both humans and animals around the globe, and the future ramifications from friendly fire there from, i.e. iatrogenic exposure and transmission there from from all of the above, should not be underestimated. ...



APHIS Indemnity Regulations [Docket No. APHIS-2021-0010] RIN 0579-AE65 Singeltary Comment Submission

Comment from Singeltary Sr., Terry

Posted by the Animal and Plant Health Inspection Service on Sep 8, 2022




SPECIFIED RISK MATERIALS DOCKET NUMBER DOCKET NO. FSIS-2022-0027 SINGELTARY SUBMISSION ATTACHMENT



SO, WHO'S UP FOR SOME MORE TSE PRION POKER, WHO'S ALL IN $$$ 

SO, ATYPICAL SCRAPIE ROUGHLY HAS 50 50 CHANCE ATYPICAL SCRAPIE IS CONTAGIOUS, AS NON-CONTAGIOUS, TAKE YOUR PICK, BUT I SAID IT LONG AGO WHEN USDA OIE ET AL MADE ATYPICAL SCRAPIE A LEGAL TRADING COMMODITY, I SAID YOUR PUTTING THE CART BEFORE THE HORSE, AND THAT'S EXACTLY WHAT THEY DID, and it's called in Texas, TEXAS TSE PRION HOLDEM POKER, WHO'S ALL IN $$$

***> AS is considered more likely (subjective probability range 50–66%) that AS is a non-contagious, rather than a contagious, disease.

SNIP...SEE;

THURSDAY, JULY 8, 2021 

EFSA Scientific report on the analysis of the 2‐year compulsory intensified monitoring of atypical scrapie





TUESDAY, MAY 31, 2022 

USA Bovine Spongiform Encephalopathy BSE: description of typical and atypical cases 


TUESDAY, SEPTEMBER 07, 2021

Atypical Bovine Spongiform Encephalopathy BSE OIE, FDA 589.2001 FEED REGULATIONS, and Ingestion Therefrom


TUESDAY, SEPTEMBER 13, 2022 

BSE pathogenesis in the ileal Peyer’s patches and the central and peripheral nervous system of young cattle 8 months post oral BSE challenge


TUESDAY, SEPTEMBER 07, 2021

Atypical Bovine Spongiform Encephalopathy BSE OIE, FDA 589.2001 FEED REGULATIONS, and Ingestion Therefrom


Bovine Spongiform Encephalopathy BSE TSE Prion Origin USA


WEDNESDAY, JANUARY 12, 2022 

Bovine Spongiform Encephalopathy BSE TSE Prion Origin USA, what if?


PLOS ONE Journal 

*** Singeltary reply ; Molecular, Biochemical and Genetic Characteristics of BSE in Canada Singeltary reply ;


IBNC Tauopathy or TSE Prion disease, it appears, no one is sure 

Terry S. Singeltary Sr., 03 Jul 2015 at 16:53 GMT

***however in 1 C-type challenged animal, Prion 2015 Poster Abstracts S67 PrPsc was not detected using rapid tests for BSE.

***Subsequent testing resulted in the detection of pathologic lesion in unusual brain location and PrPsc detection by PMCA only.

*** IBNC Tauopathy or TSE Prion disease, it appears, no one is sure ***


MONDAY, SEPTEMBER 19, 2022 

589.2001 BSE TSE regulations which prohibits the use of high-risk cattle material in feed for all animal species 2022


SATURDAY, SEPTEMBER 24, 2022 

Transmission of CH1641 in cattle 


FRIDAY, APRIL 1, 2022 

USDA TAKES THE C OUT OF COOL, what's up with that?


MONDAY, JUNE 6, 2022 

APHIS USDA History Highlight: APHIS Combats Bovine Spongiform Encephalopathy Published Jun 1, 2022


MONDAY, NOVEMBER 30, 2020 

***> REPORT OF THE MEETING OF THE OIE SCIENTIFIC COMMISSION FOR ANIMAL DISEASES Paris, 9–13 September 2019 BSE, TSE, PRION

see updated concerns with atypical BSE from feed and zoonosis...terry


WEDNESDAY, DECEMBER 8, 2021 

Importation of Sheep, Goats, and Certain Other Ruminants AGENCY: Animal APHIA, USDA, FINAL RULE [Docket No. APHIS–2009–0095] RIN 0579–AD10 


WEDNESDAY, MARCH 24, 2021 

USDA Animal and Plant Health Inspection Service 2020 IMPACT REPORT BSE TSE Prion Testing and Surveillance MIA 


SUNDAY, MARCH 21, 2021 

Investigation Results of Texas Cow That Tested Positive for Bovine Spongiform Encephalopathy (BSE) Aug. 30, 2005 Singeltary's Regiew 2021 


THURSDAY, AUGUST 20, 2020 

Why is USDA "only" BSE TSE Prion testing 25,000 samples a year? 


THURSDAY, JANUARY 23, 2020

USDA Consolidates Regulations for NAHLN Laboratory Testing USDA Animal and Plant Health Inspection Service 

sent this bulletin at 01/23/2020 02:15 PM EST


WEDNESDAY, APRIL 24, 2019 

USDA Announces Atypical Bovine Spongiform Encephalopathy Detection Aug 29, 2018 A Review of Science 2019


Saturday, July 23, 2016

BOVINE SPONGIFORM ENCEPHALOPATHY BSE TSE PRION SURVEILLANCE, TESTING, AND SRM REMOVAL UNITED STATE OF AMERICA UPDATE JULY 2016


Tuesday, July 26, 2016

Atypical Bovine Spongiform Encephalopathy BSE TSE Prion UPDATE JULY 2016


Monday, June 20, 2016

Specified Risk Materials SRMs BSE TSE Prion Program


*** PLEASE SEE THIS URGENT UPDATE ON CWD AND FEED ANIMAL PROTEIN ***

Sunday, March 20, 2016

Docket No. FDA-2003-D-0432 (formerly 03D-0186) Use of Material from Deer and Elk in Animal Feed ***UPDATED MARCH 2016*** Singeltary Submission


SEE MAD COW FEED VIOLATIONS AFER MAD COW FEED VIOLATIONS ;


Tuesday, April 19, 2016

Docket No. FDA-2013-N-0764 for Animal Feed Regulatory Program Standards Singeltary Comment Submission


17 years post mad cow feed ban August 1997 

Monday, October 26, 2015 

FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEED VIOLATIONS OFFICIAL ACTION INDICATED OIA UPDATE October 2015 


Tuesday, December 23, 2014 

FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEEDVIOLATIONS OFFICIAL ACTION INDICATED OAI UPDATE DECEMBER 2014 BSE TSE PRION 


16 years post mad cow feed ban August 1997 2013 

Sunday, December 15, 2013 

FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEED VIOLATIONS OFFICIAL ACTION INDICATED OIA UPDATE DECEMBER 2013 UPDATE 


Saturday, August 29, 2009

FOIA REQUEST FEED RECALL 2009 Product may have contained prohibited materials Bulk Whole Barley, Recall # V-256-2009


Friday, September 4, 2009

FOIA REQUEST ON FEED RECALL PRODUCT 429,128 lbs. feed for ruminant animals may have been contaminated with prohibited material Recall # V-258-2009


Thursday, March 19, 2009

MILLIONS AND MILLIONS OF POUNDS OF MAD COW FEED IN COMMERCE USA WITH ONGOING 12 YEARS OF DENIAL NOW, WHY IN THE WORLD DO WE TO TALK ABOUT THIS ANYMORE $$$



SATURDAY, OCTOBER 8, 2022 

Cattle with the EK211 PRNP polymorphism are susceptible to the H-type bovine spongiform encephalopathy agent from either E211K or wild type donors after oronasal inoculation 


MONDAY, AUGUST 29, 2022 

Pathobiology, Genetics, and Detection of Transmissible Spongiform Encephalopathies 2021 Annual Report 


BRAZIL, BSE, SCRAPIE, CJD, TSE, HISTORY

SATURDAY, SEPTEMBER 4, 2021

Brazil Confirms TWO More Cases of Mad Cow Disease BSE States of Mato Grosso and Minas Gerais

OIE REPORT Brazil BSE 2 CASES CONFIRMED



OIE

Most recent notifications

Country/Territory Disease-Serotype/genotype/subtype Date

Brazil Bovine spongiform encephalopathy 06/09/21

Brazil Bovine spongiform encephalopathy 06/09/21



BRAZIL BSE EEB TSE PRION


CASOS EEB ATÍPICA NO BRASIL

1º CASO: de corte – 13 anos Ø Sertanópolis – Paraná; animal em decúbito – negahvo para raiva; sem alterações no histopatológico Ø 15.06.2012 – diagnóshco posihvo Imunohistoquímica – LANAGRO-PE – Nota Técnica 159/2012; Ø Animal Health and Veterinary Laboratories Agency (AHVLA), Weybridge, United Kingdom – 06.12.2012 - EEB a*pica do 0po H Vaca 2º CASO: corte 12 anos – abate 19.03.14 – vigilância abate emergência – decúbito esternal – fadiga muscular - Notas Técnicas DSA 42 e 52/2014 Ø Porto Esperidião, Mato Grosso; Ø CaracterísHcas – EEB aIpica do Hpo H Ambos no(ficados para OIE. 

CASOS EEB ATÍPICA NO BRASIL

3º CASO – 2019 Vaca de corte Nelore – 17 anos Ø Vigilância abate de emergência – animal caído – coleta em 05.04.2019 Ø Nova Canaã do Norte, Mato Grosso Ø Diagnóshco posihvo ELISA – 13.05.2019 - LFDA-PE; Ø Laboratório da Agência de Inspeção de Alimentos Canadenses (CFIA) Alberta, Canada (Laboratório de Referência da OIE) – posihvo ELISA 31.05.2019 Ø CFIA – Canadá – Western Blot – EEB aIpica do Hpo H


OFFICIAL NOTE

Update on an atypical BSE case verified in Mato Grosso Share: Published 06/03/2019 5:41 PM 1- After examining the notification of the occurrence by the International Organization for Animal Health (OIE), this body determined today (3) the closure of the case without changing the Brazilian health status, which remains an insignificant risk for the disease.

2 - The OIE also informed that there will be no supplementary reports on the case.

3 - In the case of China, the Ministry of Agriculture, Livestock and Supply of Brazil has temporarily suspended the issuance of health certificates until the Chinese authority completes its assessment of the information already transmitted about the episode, thus complying with the provisions of the protocol bilateral agreement signed in 2015.


OFFICIAL NOTE

Occurrence of an atypical case of Bovine Spongiform Encephalopathy in Mato Grosso

Published on 05/31/2019 5:20 PM Updated on 05/31/2019 5:25 PM

The Agricultural Defense Secretariat of the Ministry of Agriculture, Livestock and Supply (Mapa) confirms the occurrence, in Mato Grosso, of an atypical case of Bovine Spongiform Encephalopathy ( BSE ). This disease occurs spontaneously and sporadically and is not related to the ingestion of contaminated food.

It is a beef cow, aged 17 years. All BSE- specific risk material was removed from the animal during emergency slaughter and incinerated at the slaughterhouse. Other animal-derived products were identified, located and preventively seized, with no entry of any product into the human or ruminant food chain. Therefore, there is no risk for the population.

It should be noted that the Ministry of Agriculture and the Institute of Agricultural Defense of Mato Grosso (INDEA/MT) immediately began field investigations, with a ban on the original property. All sanitary risk mitigation actions were completed even before the issuance of the final result by a reference laboratory of the World Organization for Animal Health (OIE). After confirmation, this Friday (31), Brazil officially notified the OIE and importing countries, as provided for by international standards.

According to OIE rules, there will be no change in Brazil's risk classification for the disease, which will continue as a country with an insignificant risk, the best possible for BSE . In more than 20 years of surveillance for the disease, Brazil registered only three cases of atypical BSE and no cases of classic BSE .


 INTERNATIONAL MARKET

Brazil returns to export beef to China Sales were suspended since June 3 due to notification of an unusual case of BSE in Mato Grosso Share: Published 06/13/2019 11:04 AM Updated on 06/13/2019 1:08 PM China will resume beef imports from Brazil, which had been suspended since June 3, due to the notification of an atypical case of Bovine Spongiform Encephalopathy ( BSE ), detected in Mato Grosso.

China is the only country, among Brazil's importers, that has a sanitary protocol that requires the temporary suspension of meat imports when an atypical case of BSE is detected . The minister of Agriculture, Livestock and Supply, Tereza Cristina, received the news of the reopening of the Chinese market this morning. The minister reaffirmed that she will continue negotiating a new protocol with the Chinese health authorities.

The disease was found in a 17-year-old beef cow. All BSE- specific risk material was removed from the animal during emergency slaughter and incinerated at the slaughterhouse. Other animal-derived products were identified, located and preventively seized, with no entry of any product into the human or ruminant food chain. Therefore, there was no risk for the population.


TUESDAY, SEPTEMBER 27, 2016 Classical Scrapie Diagnosis in ARR/ARR Sheep in Brazil Acta Scientiae Veterinariae, 2015. 43(Suppl 1): 69.

CASE REPORT Pub. 69

ISSN 1679-9216

1

Received: 4 August 2014 Accepted: 19 December 2014 Published: 6 February 2015

1Programa de Pós-graduação em Ciências Veterinárias (PPGCV), Faculdade de Veterinária (FaVet), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil. 2Setor de Patologia Veterinária (SPV), Departamento de Patologia Clínica Veterinária (DPCV), FAVET, UFRGS, Porto Alegre, RS, Brazil. 3Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde (ICBS), UFRGS, Porto Alegre, RS. CORRESPONDENCE: J.S. Leal [julianoob@gmail.com - Tel.: +55 (51) 3308 3631]. Setor de Patologia Veterinária, FAVET, UFRGS. Av. Bento Gonçalves n. 9090, Bairro Agronomia. CEP 91540-000 Porto Alegre, RS, Brazil.

 Classical Scrapie Diagnosis in ARR/ARR Sheep in Brazil

 Juliano Souza Leal1,2, Caroline Pinto de Andrade2, Gabriel Laizola Frainer Correa2, Gisele Silva Boos2, Matheus Viezzer Bianchi2, Sergio Ceroni da Silva2, Rui Fernando Felix Lopes3 & David Driemeier2

 ABSTRACT

 Background: Scrapie is a transmissible spongiform encephalopathy (TSE) that affects sheep flocks and goat herds. The transfer of animals or groups of these between sheep farms is associated with increased numbers of infected animals and with the susceptibility or the resistance to natural or classical scrapie form. Although several aspects linked to the etiology of the natural form of this infection remain unclarified, the role of an important genetic control in scrapie incidence has been proposed. Polymorphisms of the PrP gene (prion protein, or simply prion), mainly in codons 136, 154, and 171, have been associated with the risk of scrapie. Case: One animal from a group of 292 sheep was diagnosed positive for scrapie in the municipality of Valparaíso, state of São Paulo, Brazil. The group was part of a flock of 811 free-range, mixed-breed Suffolk sheep of the two genders and ages between 2 and 7 years from different Brazilian regions. Blood was collected for genotyping (for codons 136, 141, 154 and 171), and the third lid and rectal mucosa were sampled for immunohistochemistry (IHC) for scrapie, from all 292 animals of the group. IHC revealed that seven (2.4%) animals were positive for the disease. Collection of samples was repeated for 90 animals, among which the seven individuals diagnosed positive and 83 other animals that had some degree of kinship with those. These 90 sheep were sacrificed and necropsied, when samples of brain (obex), cerebellum, third eyelid, rectal mucosa, mesenteric lymph node, palatine tonsil, and spleen were collected for IHC. The results of IHC analyses carried out after necropsy of the seven positive animals submitted to the second collection of lymphoreticular tissue and of the 83 animals with some degree of kinship with them confirmed the positive diagnosis obtained in the first analysis, and revealed that three other sheep were also positive for scrapie. Samples of 80 animals (89%) were negative for the disease in all organs and tissues analyzed. In turn, 10 sheep (11%) were positive, presenting immunoreactivity in one or more tissues. Genotyping revealed the presence of four of the five alleles of the PrP gene commonly detected in sheep: ARR, ARQ, VRQ and ARH. These allele combinations formed six haplotypes: ARR/ARR, ARR/ARQ, ARH/ARH, ARQ/ARH, ARQ/ARQ and ARQ/VRQ. Animals were classified according to susceptibility to scrapie, when 8.9% of the genotyped sheep were classified into risk group R1 (more resistant, with no restriction to breeding). In turn, 40% of the animals tested ranked in groups R4 and R5 (genetically very susceptible, cannot be used for breeding purposes). Discussion: The susceptibility of sheep flocks depends on the genetic pattern of animals and is determined by the sequence of the gene that codifies protein PrP. Additionally, numerous prion strains are differentiated based on pathological and biochemical characteristics, and may affect animals differently, depending on each individual’s genotype. Most epidemiologic data published to date indicate that animals that carry the ARR/ARR genotype are less susceptible to classical scrapie. However, in the present study, the fact that two scrapie-positive sheep presented the haplotype ARR/ARR indicates that this genotype cannot always be considered an indicator of resistance to the causal agent of the classical manifestation of the disease. The coexistence in the same environment of several crossbred animals from different flocks and farms, which characterizes a new heterogeneous flock, may have promoted a favorable scenario to spread the disease, infecting animals in the most resistant group.

 Keywords: biopsy, scrapie, TSEs, immunohistochemistry.

 DISCUSSION

 The susceptibility of sheep flocks to scrapie depends largely on the genetic pattern of the animal, and is determined mainly by the sequence of the gene that codifies the PrP protein, since there are several polymorphisms that affect the conversion of the cell protein PrPC to its pathological form, PrPSc [8, 9]. Nevertheless, it is not possible to consider the occurrence of only one form of ovine prion, since there are numerous prion strains with different pathological and biochemical characteristics that may affect animals distinctively, depending on their genotypes [1, 30]. In the present study, the frequency of codon VRQ was very low (2.2%), confirming previous findings, which revealed that the alleles ARR and ARQ prevail in Suffolk sheep, and that the allele ARH sometimes is detected [12, 32]. The high sensitivity of homozygous VRQ carriers or of individuals with ARQ haplotypes has also been reported in the literature [24]. This condition raises concerns about susceptibility from the epidemiological perspective, since the allele VRQ, which is rare or absent in breeds like Suffolk, was present in two animals, one of which was positive for scrapie. Most epidemiological and genetic data published indicate that sheep carrying the haplotype ARR/ ARR are less susceptible to classical form, while animals with the haplotype VRQ in homozygosis or with ARQ haplotypes are highly susceptible [24]. This hypothesis is supported by genotyping data for thousands of sheep with the disease around the world. For example, a study carried out in Japan described a classical scrapie case in one ARR/ARR sheep [16]. Sensitivity of ARR/ARR sheep in a scenario of oral exposure to the disease has also been reported [3]. Atypical cases were observed in ARR/ARR animals [11, 42].

 Polymorphisms at codon positions 136, 154 and 171 are not the only ones associated with resistance or susceptibility to scrapie [33]. An analysis of the variation of codon positions 136 and 171, for instance, showed that each has several adjacent polymorphic sites and may codify up to four amino acids [7, 50]. The atypical scrapie form, characterized by strain Nor98 [6], is more frequently detected in AHQ animals that carry a polymorphism in codon 141, and has not been described in Suffolk sheep in Brazil [2]. This atypical form expresses phenylalanine (F), instead of leucine (L) in the form L141F [6, 37, 46].

 However, although it is generally acceptable that classical scrapie is an infectious and contagious disease [14], contagion with the atypical form is questionable in light of the fact that the specific marker for the atypical manifestation of the disease is detected outside the central nervous system [5, 20, 29], even in cases experimentally transmitted to transgenic mice [35] and sheep [47]. Several studies have demonstrated that susceptibility to the atypical form is consistently associated with PrP codons 141 (L/F) and 154 (R/H) [6, 42]. In fact, studies have proposed the hypothesis that this form may evolve when the animal is not exposed to the infectious agent [5, 18, 29, 48], given the limited knowledge of the physiopathology of this manifestation of the disease [19].

 In the present study, two (2/8) positive animals presented the haplotype ARR/ARR, which is considered to be the least susceptible and therefore responsible for the lowest risk of scrapie. However, like all sheep that were genotyped, these animals did not present any change in lysine in codon position 141. This change (that is, when lysine is replaced by phenylalanine) has been associated with atypical scrapie in Suffolk sheep [6]. Therefore, these two ARR/ARR sheep do not fit in the genotypic characteristics of sheep that may commonly present the atypical form. It is possible that the presence of several crossbred animals of different flocks and farms in the same environment, which characterizes an heterogeneous flock, has created the favorable conditions for the disease to evolve and spread, infecting the more susceptible animals.

 The variation in the frequency of the PrP genotype between flocks has been identified as a real risk factor for the disease [4]. The introduction of adult sheep free of scrapie in contaminated flocks is believed to allow lateral transmission, even between adult animals with less susceptible genotypes [40, 45], although young sheep are more predisposed [43]. Other reasons behind differences in occurrence include the stress caused during husbandry and large population numbers [26]. Additionally, the lack of a defined epidemiological pattern and the different strains of the causal agent play an important role in inter-flock variability [40]. Several models were based on the assumption that outbreak duration is influenced by flock size and by the frequency of the PrP genotype in one flock [25, 26, 38, 51]. Commercial flocks with high genetic diversity, mainly in codons other than 136, 154 and 171, are more consistently affected. In these animals, the onset of clinical manifestations occurs at significantly different ages, with means varying from 2 to 5.7 years, due to noteworthy dissimilarities in age and PrP genotype profiles [40]. The purchase of infected animals has been pointed out as the main scrapie infection mechanism in flocks [27, 41].

 *** The diagnosis of scrapie in two homozygous ARR/ARR sheep indicates that the resistance of this genotype to the classical form of the disease is debatable. Although scrapie in these animals is rare, the cases presented in this case report lend strength to the notion that its occurrence depends on a combination of infectious factors, including differences in biological and biochemical properties in the natural hosts to this prion.

 MANUFACTURERS 1VMRD Pullman Albion Road. Pullman, WA, USA. 2Qiagen. Hilden, Germany. 3InvitrogenTM. São Paulo, Brazil. 4Life TechnologiesTM. Gaithersburg, MD, USA. 5InvitrogenTM. Carlsbad, CA, USA. 6Applied Biosystems Inc. Foster City, CA, USA. Declaration of interest. The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.




Scrapie diagnosis in a goat and four Santa Inês sheep from the same herd in Brazil

J.S. LealG.L.F. CorreaG.S. BoosM.V. BianchiF.M. BoabaidR.F.F. LopesD. Driemeier

Diagnóstico de scrapie em um caprino e quatro ovinos Santa Inês de um mesmo rebanho no Brasil

Scrapie is a fatal and progressive transmissible spongiform encephalopathy (TSE) of natural occurrence in sheep and goats. The suspicion of scrapie may be based on clinical signs; however, the detection of pathological features of the prionic protein (PrP) in target tissues is necessary to diagnose the disease. The presence of an abnormal protein form (PrPSc) in lymphoreticular and nervous tissues is an important characteristic in diagnosis. This paper reports a case of scrapie in a flock of 55 Suffolk crossbred sheep, 19 Santa Inês sheep and 21 goats in the Mato Grosso state, midwestern Brazil. The animals were euthanized after the confirmation of a scrapie case with clinical signs in a Suffolk sheep in the same farm. Samples of brainstem at the level of the obex and lymphoid issues like palatine tonsils, mesenteric lymph nodes, third eyelid fixed in formalin 10% were processed for histological examination. Histological examination with hematoxylin and eosin did not show any microscopic changes in samples. Immunohistochemistry (IHC) examination to detect anti-prion PrPSc was performed in lymphoid tissues. Scrapie diagnosis was confirmed based on IHC positive results for PrPSc in lymphoid tissues of a crossbreed goat and four Santa Inês sheep, without any clinical scrapie signs. IHC showed positive staining in at least three lymphoid germinal centers in goat mesenteric lymph node, palatine tonsil, and third eyelid samples. The mesenteric lymph node, and tonsil samples of all sheep showed positive immunostaining, and only one sheep showed positive staining in lymphoid follicles in the third eyelid. Scrapie diagnosis using IHC in fixed samples of lymphoreticular tissue is technically feasible to detect the disease in both goats and sheep, as a form of pre-clinical diagnosis. The results indicate that the herd was infected by a sheep coming from another herd where scrapie had been diagnosed before.

scrapie; prion; diseases of small ruminants; immunohistochemistry; lymphoid tissues


WEDNESDAY, JUNE 12, 2019

FINAL REPORT OF AN AUDIT CONDUCTED IN BRAZIL MAY 15 TO JUNE 2, 2017 EVALUATING THE FOOD SAFETY SYSTEMS GOVERNING MEAT PRODUCTS EXPORTED TO THE UNITED STATES OF AMERICA


TUESDAY, MARCH 26, 2019 

Joint Statement from President Donald J. Trump USA and President Jair Bolsonaro Brazil FOREIGN POLICY BSE TSE Prion aka mad cow disease


SATURDAY, JUNE 01, 2019 

Brazil reports another cases of mad cow disease atypical BSE TSE Prion 


FINAL REPORT OF AN AUDIT CONDUCTED IN BRAZIL MAY 15 TO JUNE 2, 2017 EVALUATING THE FOOD SAFETY SYSTEMS GOVERNING MEAT PRODUCTS EXPORTED TO THE UNITED STATES OF AMERICA 

FINAL REPORT OF AN AUDIT CONDUCTED IN BRAZIL

MAY 15 TO JUNE 2, 2017

EVALUATING THE FOOD SAFETY SYSTEMS GOVERNING MEAT PRODUCTS EXPORTED TO THE UNITED STATES OF AMERICA

FINAL REPORT OF AN AUDIT CONDUCTED IN BRAZIL

MAY 15 TO JUNE 2, 2017

EVALUATING THE FOOD SAFETY SYSTEMS GOVERNING MEAT PRODUCTS

EXPORTED TO THE UNITED STATES OF AMERICA

November 6, 2017

Food Safety and Inspection Service

United States Department of Agriculture 

Executive Summary

This report describes the outcome of an onsite equivalence verification audit conducted by the Food Safety and Inspection Service (FSIS) from May 15 to June 2, 2017. The purpose of the audit was to determine whether Brazil's meat inspection system remains equivalent to that of the United States, with the ability to export products that are safe, wholesome, unadulterated, and correctly labeled and packaged. At the time of this audit, Brazil was approved to export raw intact, ready-to-eat (RTE), not ready-to-eat (NRTE) processed, and thermally processed, commercially sterile (TPCS) meat.

The audit focused on six system equivalence components: (1) Government Oversight (e.g., Organization and Administration); (2) Government Statutory Authority, Food Safety, and Other Consumer Protection Regulations (e.g., Inspection System Operation, Product Standards and Labeling, and Humane Handling); (3) Government Sanitation; (4) Government Hazard Analysis and Critical Control Points (HACCP) System; (5) Government Chemical Residue Testing Programs; and (6) Government Microbiological Testing Programs. The FSIS auditors identified the following systemic findings:

Government Oversight

 The Central Competent Authority (CCA) has not developed policies and procedures to identify potential areas where conflicts of interest could arise between inspection personnel and the regulated establishments where they work;

 The CCA does not verify that regulatory information provided to supervisory official veterinarians is consistently communicated to their subordinates;

 The CCA does not verify that in-plant inspectors perform their assigned duties in a manner that is consistent with the issued instructions; and

 The CCA has not developed procedures to standardize the assessment of competence and performance of in-plant inspection personnel assigned to United States-certified establishments. Government Statutory Authority and Food Safety and Other Consumer Protection Regulations

 The implemented post-mortem inspection procedures are inadequate to ensure that only wholesome carcasses, free of contamination and defects receive the mark of inspection;

 Brazilian TPCS product reinspected at United States point-of-entry demonstrates a trend of abnormal container violations; and

 Higher-level officials did not adequately review and follow-up on periodic supervisory reports and plans of action.

Government Sanitation

 Inspection personnel do not adequately enforce sanitation regulatory requirements to prevent the creation of insanitary conditions and direct product contamination.

Government HACCP System

 Inspection personnel do not accurately assess the design and implementation of the establishments HACCP systems, and do not conduct adequate verification sampling of products. Government Chemical Residue Testing

 The official methods of chemical analysis used by the government laboratories is inconsistent with FSIS requirements; and

 The CCA has not instructed establishments and in-plant inspectors to hold livestock carcasses selected for residue sampling until acceptable results are received.

During the audit exit meeting, the CCA committed to address the preliminary findings as presented. FSIS received a written response from the CCA addressing all outstanding concerns identified in the draft final audit report. FSIS will evaluate the adequacy of the proposed corrective actions and base its activities for future equivalence verification on the information provided. 

snip...see full text;


Post forecasts beef production in 2019 at 10.2 million metric tons, which is an increase of 3 percent. The increase is driven by solid exports, mostly to China and Hong Kong and moderate domestic demand. Posts also forecasts pork production to increase by over 3 percent and reach nearly 3.8 million metric tons, reflecting a rebound in exports, moderate domestic demand and favorable feed costs in 2019. The expected growth of the Brazilian economy in 2019, with declining inflation and unemployment rates support optimism in the animal protein sector in Brazil. Major uncertainties in the near future include the volatility of the exchange rate, end of the year elections and a new federal administration in 2019. 



USDA Halts Beef Imports from Brazil Drovers

June 22, 2017 04:59 PM

Imports of fresh beef from Brazil are being halted into the U.S. The announcement was made by Secretary of Agriculture Sonny Perdue after inspections by USDA-Food Safety and Inspection Service (FSIS) revealed concerns over safety issues.

"Ensuring the safety of our nation’s food supply is one of our critical missions, and it’s one we undertake with great seriousness," Perdue says.

Brazil’s Ministry of Agriculture self-suspended the shipment of beef from five packing plants after U.S. officials found "irregularities" in the processed carcasses this past week. However, the move by Perdue and USDA will supersede the self-suspension.

A statement from the Brazilian Association of Beef Industry Exports says the self-suspension happened "after the detection of [bovine] reactions to the vaccine for foot-and-mouth disease, that in some cases can provoke internal, and not externally visible abscesses."

The voluntary halt by Brazil appeared to be temporary while the vaccine manufacture attempted to find a solution for the abscesses. Now it could be much longer before fresh Brazilian beef enters the U.S.

"Once again the industry is inheriting a problem that it has not created," says Antonio Camardelli, president of the board of the Brazilian Association of Meat Exporters.

The Ministry of Agriculture was alerted by USDA-FSIS on June 16 and exports were stopped immediately from those plants impacted. State locations and ownership of the packing facilities include:

Owner JBS Location Mato Grosso do Sul 

Owner Minerva Location Goias 

Owner Marfrig Locations Sao Paulo Mato Grosso Rio Grande do Sul The U.S. just began exporting fresh beef from Brazil last year after a trade agreement was reached on Aug. 1. Prior to this trade deal, Brazil had not had access into the U.S. since 2003 because of foot-and-mouth disease outbreaks. Similarly, U.S. beef had not been in Brazil since 2003 when bovine spongiform encephalopathy was found.

"Although international trade is an important part of what we do at USDA, and Brazil has long been one of our partners, my first priority is to protect American consumers," Perdue says. "That’s what we’ve done by halting the import of Brazilian fresh beef. I commend the work of USDA’s Food Safety and Inspection Service for painstakingly safeguarding the food we serve our families."

There were 31 packing plants in Brazil approved to export into the U.S. prior to this suspension.

Brazil’s meat packing industry has seen a number of setbacks in the past few months after the discovery of a widespread bribery scandal. Aftershocks from the corruption scandal have included:

The stoppage of exports into a number of countries JBS owners stepping down from the board The selloff of several other JBS packing plants in South America More selloffs of different JBS businesses like Five Rivers Cattle Feeding in the U.S. In March, USDA FSIS began inspecting all meat product coming from Brazil. During that time FSIS has rejected 11% of Brazilian fresh beef imports. It adds up to 1.9 million pounds of beef from 106 lots that were rejected because of public health concerns, sanitary conditions and animal health issues. 

National Cattlemen’s Beef Association (NCBA) is in support of the decision to suspend fresh beef imports from Brazil.

"This action is the result of USDA’s strong, science-based testing protocol of imported beef and this proves that our food safety system works effectively. NCBA supports USDA’s commitment to science-based trade and its commitment to keeping our food supply as safe as possible," says Craig Uden, NCBA president.

There is no timeline for when Brazil will be eligible to again export beef to the U.S. market. 


Minvera to export beef to US

09.15.2016

By Erica Shaffer SAO PAULO, Brazil – Two meat processing facilities owned by Minerva SA have been cleared to export fresh beef to the United States.

The company’s facilities in Palmeiras de Goias and Barretos have processing capacities of 2,000 head of cattle per day and 840 head of cattle per day, respectively. In a notice to shareholders, the company explained that, “The US import system is based on specific quotas depending on the country or group of countries, and Brazil has not yet been assigned a quota. Therefore, the country will initially be included under the ‘Other’ quota (with a total equivalent to 64,800 ton/year), where countries such as Chile, Costa Rica, El Salvador, Honduras, Nicaragua and the Dominican Republic, together, are also able to export to USA.”

In August, USDA announced that Brazil had reopened its markets to US beef exports. Brazil had banned imports of US beef and beef products in 2003 after the discovery of a confirmed case of bovine spongiform encephalopathy (BSE). Brazil had its own brush with atypical BSE in 2012. Animals classified as having atypical BSE may or may not get BSE.

Minerva operates 17 slaughtering and boning plants — 11 in Brazil, three in Paraguay, two in Uruguay and one in Colombia. Slaughtering capacity is 17,330 head of cattle per day, and boning capacity is 20,300 head per day, according to the company’s website. Minerva also operates 13 distribution centers.



TUESDAY, SEPTEMBER 27, 2016 

Classical Scrapie Diagnosis in ARR/ARR Sheep in Brazil 

Acta Scientiae Veterinariae, 2015. 43(Suppl 1): 69. 


MONDAY, AUGUST 1, 2016 

USDA Announces Reopening of Brazilian Market to U.S. Beef Exports and the Potential for Transmissible Spongiform Encephalopathy TSE prion disease


MONDAY, MAY 5, 2014 

Brazil BSE Mad Cow disease confirmed OIE 02/05/2014


Monday, May 5, 2014 

Brazil 2nd BSE Mad Cow disease confirmed OIE 02/05/2014 


Thursday, April 24, 2014 

Brazil investigates possible BSE mad cow case 


WEDNESDAY, JANUARY 29, 2014

Another Suspect case of Creutzfeldt-Jakob disease investigated in Brazil


THURSDAY, SEPTEMBER 26, 2013 

Brazil evaluate the implementation of health rules on animal by-products and derived products SRM BSE TSE PRION aka MAD COW DISEASE


Wednesday, December 19, 2012 

Scientific Report of the European Food Safety Authority on the Assessment of the Geographical BSE Risk (GBR) of Brazil 


***> Friday, December 07, 2012 

***> ATYPICAL BSE BRAZIL 2010 FINALLY CONFIRMED OIE 2012 


FRIDAY, FEBRUARY 03, 2023 

OIE Netherlands Bovine Spongiform Encephalopathy BSE, atypical strain, L-type 


Friday, February 10, 2023 

OIE WAHIS SPAIN BOVINE SPONGIFORM ENCEPHALOPATHY BSE Atypical H-Type


WEDNESDAY, FEBRUARY 8, 2023

NATIONAL PRION DISEASE PATHOLOGY SURVEILLANCE CENTER SURVEILLANCE TABLES OF CASES EXAMINED January 11th, 2023


Aug. 5, 2001

Mad cow disease: Could it be here?

Man's stubborn crusade attracts experts' notice

Photo of Carol Christian

Carol Christian, Chron.com / Houston Chronicle

Aug. 5, 2001

Like Paul Revere with e-mail, Terry Singeltary Sr. is on a mission to sound an alarm: Beware of mad cow disease.

As is true of many crusaders, however, his pleas often fall on deaf ears. Health officials here and abroad insist that bovine spongiform encephalopathy -- popularly known as mad cow disease, a fatal brain disorder that can make cows shake uncontrollably -- has been kept out of this country through surveillance of the cattle industry.

But since his mother's death in December 1997, the Galveston County man has been obsessed with possible connections between her deadly brain disorder, sporadic Creutzfeldt-Jakob Disease, and mad cow disease.

And after much persistence on his part, people are taking notice of this former machinist and high school dropout who jokes that he has a Ph.D. -- a Pool Hall Degree.

"They called me Chicken Little for four years," he said. "Now they're calling back, asking for more information."

For the past year he has been U.S. co-coordinator of an international monitoring group called CJD Watch. He regularly gets e-mail from scientists and journalists around the world.

Debora MacKenzie, a reporter for the British magazine New Scientist, described Singeltary, 47, as a "dogged unearther and tabulator of government documents."

Singeltary monitors "every word written about CJD/BSE," said Anita Manning of USA Today, also by e-mail.

"He's passionate, opinionated and not always tactful, although I like him because he's such a character and he is so transparent," Manning said. "He is what he appears to be."

Science and environment writer Jonathan Leake of the Sunday Times in London said Singeltary has helped him track down families of people with CJD along with academic research papers.

"I strongly suspect he is right in thinking the USA has had BSE cases," Leake said by e-mail.

"The American government is making the same mistake as the British in putting the short-term commercial interests of its farmers before health considerations," he added.

"It should start formal and widespread testing of cattle plus compulsory autopsies for all human CJD victims at the state's expense. If there is BSE, then leaving it to spread will kill people -- and that would eventually destroy the industry, too."

Texas Department of Health epidemiologist Julie Rawlings said Singeltary's careful monitoring of the disease had proven useful.

"Terry has been helpful in providing contact information regarding suspect CJD cases so that the Health Department can initiate case investigations and learn more about CJD in Texas," she said.

Noting that the department cannot release records on individual patients, she added, "I think we learn more from him than he does from us."

Mad cow disease surfaced in England in 1986 and quickly became an epidemic. It since has been reported in 15 European countries, most recently Greece on July 2, and the Czech Republic on June 14. Two German-born cows tested positive for BSE in November.

Singeltary said he became convinced that BSE is here as he watched his mother, Barbara Poulter of Crystal Beach, dying of sporadic Creutzfeldt-Jakob Disease. The rare, fatal brain disease is sometimes accompanied by severe jerking.

"She would jerk so bad at times, it would take three of us to hold her down," Singeltary said. "They can call it whatever they want, but I know what I saw, and what she went through. `Sporadic' simply means they don't know."

Poulter, a retired telephone-company field worker, had a form of sporadic CJD -- Haidenhain variant -- that is even less common than the typical sporadic case. One of its first symptoms is loss of vision.

She started seeing brown spots in September 1997 and was virtually blind within two weeks. By the eighth week of the illness Poulter was bedridden, and in the 10th week she died. Before that she had been in good health.

In many countries and most U.S. states, physicians are not required to report CJD cases to health officials. Texas made the disease reportable in 1998. Through 2000, there were 17 probable or confirmed cases, according to the Texas Department of Health.

In mid-June, a case of sporadic CJD was confirmed through brain biopsy at Christus Spohn Hospital Shoreline in Corpus Christi, said Jane Bakos, hospital vice president. The patient has since died, the hospital reported.

CJD and mad cow disease leave their victims' brains full of holes like a sponge. Although not contagious, the illnesses are thought to be transmissible through prions, or nearly indestructible abnormal proteins.

Because the prion protein is not killed by standard sterilization, sporadic CJD can be spread by contaminated surgical instruments.

In March 1996, the British government announced the discovery of a new variant of CJD, most likely explained by exposure to bovine spongiform encephalopathy.

Through June, 101 cases of new-variant CJD have been reported in the United Kingdom, three in France and one in Ireland. In contrast to sporadic CJD, the new variant usually affects younger patients and lasts longer.

No cases of new-variant CJD or BSE have been reported in the United States. No relationship has been shown between sporadic CJD and mad cow disease.

There is no indication that new-variant CJD can be spread through blood transfusions, but a U.S. Food and Drug Administration advisory committee voted in June to broaden the categories for excluding potential donors. The recommendations have not yet been approved by the FDA.

The American Red Cross has announced that on Sept. 17 it will begin rejecting potential blood donors who, since 1980, have spent at least three months in the United Kingdom or at least six months in any European country or combination of countries. Those who have received a blood transfusion in Britain since 1980 also will be rejected.

The primary collector of local blood donations is the Gulf Coast Regional Blood Center, which will follow the FDA's guidelines, said Bill Teague, president and chief executive officer.

Singeltary said it's naive to think that U.S. prevention efforts have kept mad cow and new-variant CJD out of the United States.

"They haven't found it," he said, "because they haven't looked."

For one thing, he said, too few cows are tested for the disease. In the first six months of this year, the European Union tested more than 3.2 million cows, David Byrne of the European Commission said in a speech last month.

By contrast, it took the U.S. Department of Agriculture nearly 10 years to analyze about 13,000 cow brains, according to the department's Web site.

With more than 68 million cattle slaughtered since 1990 in the United States, according to the USDA, checking about 13,000 falls far short, Singeltary said.

Though not a scholar, Singeltary has collected voluminous material on mad cow and CJD. Disabled from a neck injury, Singeltary never used a computer until 1998. He now spends hours each day on the Internet while his wife, Bonnie Singeltary, runs a flower shop in their home in Bacliff, in north Galveston County.

His challenge to the CJD/BSE establishment is courageous and refreshing, said Dr. Lynette Dumble, former visiting professor of surgery at University of Texas Medical School at Houston and a former senior research fellow in the history and philosophy of science at the University of Melbourne in Australia.

"I certainly have no problem with Terry's ideas on BSE/CJD," said Dumble, who coordinates the Global Sisterhood Network, a computer service that posts media reports on developments affecting women. "His research skills are excellent, and he is abreast of each and every development in the field."

Among Singeltary's worries now, he said, are widespread violations of an August 1997 ban on feeding animal products to U.S. cattle. The FDA reported in January that hundreds of feed manufacturers were not complying with regulations designed to keep BSE out of this country.

(That same month, a Purina Mills feedlot near San Antonio told the FDA that a "very low level" of cow parts had been found in cattle feed. The company voluntarily removed 1,222 animals who had been fed the prohibited materials.)

He obtained copies of FDA letters to various feed mills that had been found in violation of the regulations and immediately sent them by e-mail to hundreds of people around the world.

Singeltary might not be so zealous in getting the word out if he weren't convinced that someone is covering up the truth.

"They used to say BSE would never transmit to humans," he said, "and it has. They lied about the feed ban being in place.

"I've lost faith in the whole process. I've discovered too many things."

Photo of Carol Christian

Written By Carol Christian 



Terry S. Singeltary Sr., Bacliff, Texas,  USA, 77518 flounder9@verizon.net 

Wednesday, February 8, 2023

Prions: a threat to health security and the need for effective medical countermeasures

Prions: a threat to health security and the need for effective medical countermeasures

PERSPECTIVE

Prions: a threat to health security and the need for effective medical countermeasures

Author Ying-Chiang J. Lee

Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA

Available online 4 February 2023.


Abstract

Prions are infectious conformations of certain naturally occurring proteins. These misfolded proteins can structurally alter healthy protein, creating misfolded copies that repeat the process and form protein aggregates that lead to neuronal cell death. Although years can pass from initial prion infection to clinical presentation of symptoms, onset of symptoms is typically followed by rapid neurological decline resulting in death. Prion diseases have been characterized in animals ranging from sheep and cattle to cervids and humans, with notable cross-species infections such as the variant Creutzfeldt-Jakob disease. Thus, prions present a health risk with the potential to disrupt major food sources as well affect human health through animal to human and human to human transmission events. While human to human prion transmission is rare and the immediate risks for a prion-facilitated pandemic are low, prions are a class of pathogens for which we are underprepared. In addition, prions, and prion disease-like approaches, have also been discussed in the context of biological weapons and toxins, adding another layer of complexity surrounding biosecurity and biodefense. These threats underscore the need for increased scrutiny and research on prions. Here, pharmaceutical and nonpharmaceutical prion-specific interventions are discussed. Recent advances in prion therapeutic development are also briefly highlighted, and a set of policy recommendations are given that aims to provide high level suggestions for the prevention and mitigation of prion diseases.

snip...

3. The Threat of Prions as Biological Weapons

Biological weapons (BWs) encompass all pathogenic and toxic biological agents that can cause morbidity and/or mortality. In the traditional sense, infectious BWs can spread in a population and causes diseases and/or death. Prions are atypical in that the lag time between infection and the first appearance of symptoms and eventual death is large – typically on the order of years to decades. Prions make for stealthy but deadly BWs, with rapid neurological decline after onset of symptoms and have a 100% case fatality rate. Their use was discussed in workshops discussing the Biological and Toxin Weapons Convention in 2015 and has drawn attention from those in defense communities.30, 31, 32, 33 Depending on the bad actors’ motivations and willingness to wait for an effect, the dosage of prions per exposure could be altered through common biotechnological approaches and facilitate faster disease progression. Prions are in many ways analogous to a class of BWs known as bioregulators. First developed by the Soviet Union, and later reported by Western scientists, bioregulators are compounds that mimic, or are copies of existing, natural proteins and compounds found in the human body.34, 35, 36 Upon exogenous delivery and exposure in certain doses using engineered bacterial producers, these proteins and compounds can result in neurological and physical symptoms analogous to late-stage prion disease and eventually cause death in exposed individuals. The possible delivery mechanisms, immunological challenges, and effects are similar in both prion and bioregulator-induced diseases, the potential for protein-based BWs should be recognized and sufficient resources dedicated to developing MCMs.

The severe health consequences of a prion BW should be of concern—for both human and animal health. Biological warfare involving prions can come in several formats that will be briefly outlined here, grouped by transmission format: animal-animal, animal-human, non-transmissible human prion attack, and human-human. While more granular methods will be purposefully avoided in this non-classified work, it is important to highlight the various possible prion BW exposure and use formats to further emphasize the need for robust medical and vaccination research programs that can respond to a prion BW attack. Animal to animal prion transmission in a BW attack is perhaps the most probable and realistic according to current knowledge around prion biology. This purposeful introduction of animal-specific prion BWs are a form of agroterrorism—an attack on livestock or plants and food sources.37 Prion diseases have already affected many animal populations in the wild, primarily in North America but also now has spread into Europe. Agroterrorism via a prion agent that spreads only among cattle, pigs, or other critical meat sources and results in rapid death would seriously affect regional, national, and even international food supply and severely impact social and economic stability. Such effects could last for years and lead to negative outcomes in food security and nutritional status among various populations. Animal to human transmission, in the case of BSE/vCJD is another route of attack with a prion BW. While this form of prion disease is not known to be contagious and require direct consumption of tainted meat, such an attack would require vast animal product recalls. Importantly, this approach will directly affect human health and result in fatalities. Similar to the animal to human prion BW attack, the non-transmissible human prion attack will also affect humans directly, but not occur through means of contaminating animals, but by directly contaminating food and drink. The last prion BW approach covered here involves human to human transmission and is perhaps the most ominous of prion BW attack methods. With a deeper understanding of prion biology, transmission, and effects, a bad actor could engineer a contagious prion disease that spreads among humans like a cold. In fact, various prion delivery vehicles could be utilized that involve common infectious diseases. Such prion diseases would spread within a population and engineered to result in death years or decades later. This would lead to a catastrophic population collapse with devastating implications for humanity.

The high-level description of potential prion BW approaches neglects the feasibility and lacks a rigorous risk assessment needed to prioritize likely prion BW use from an objective standpoint. However, taken together, the prion BW approaches highlight the broad risk to both humans and animals and underscore the importance in the research and development of prion-specific vaccines and therapeutics.

snip...

Keywords: Prions, Medical countermeasures, Interventions, Vaccines, Biosecurity, Policy 1. Background 

snip...see full text;



Docket No: 02-088-1 RE-Agricultural Bioterrorism Protection Act of 2002 Singeltary Submission;

Subject: Docket No: 02-088-1 RE-Agricultural Bioterrorism Protection Act of 2002;

Date: Mon, 27 Jan 2003 15:54:57 -0600

From: "Terry S. Singeltary Sr."

To: [log in to unmask]

Docket No: 02-088-1

Title: Agricultural Bioterrorism Protection Act of 2002; Possession, Use, and Transfer of Biological Agents and Toxins

http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=2002_register&docid=fr13de02-15.pdf

Greetings,

i would like to kindly submit to this docket and warn of the potential for biological 'suitcase bombs' from civilian air-traffic populations from known BSE/FMD and other exotic animal disease pathogens coming into the USA.

please be warned;

Date: Thu, 21 Mar 2002 08:42:56 -0800

Reply-To: Bovine Spongiform Encephalopathy

Sender: Bovine Spongiform Encephalopathy

From: "Terry S. Singeltary Sr."

Subject: USA SEALED BORDERS AND THE ''USCS'' (unspecified species coding

system) MORE POTENTIAL B.S.eee

Change in Disease Status of Greece With Regard to Foot-and-Mouth

[Federal Register: March 21, 2002 (Volume 67, Number 55)]

snip...

Under Sec. 94.11, meat and other animal products of ruminants and swine, including ship stores, airplane meals, and baggage containing these meat or animal products, may not be imported into the United States except in accordance with Sec. 94.11 and the applicable requirements of the U.S. Department of Agriculture's Food Safety and Inspection Service at 9 CFR chapter III.

snip...

From an economic standpoint, the proposed rule would have little or no impact on U.S. animal stock and commodities. There are two reasons. First, the proposed rule would not remove other disease-based restrictions on the importation of ruminants or swine (and certain meat and other products from those animals) from Greece into the United States. Because bovine spongiform encephalopathy is considered to exist in Greece, the importation of ruminants and meat, meat products, and certain other products of ruminants that have been in Greece is prohibited.

snip...

http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=2002_register&docid=02-6837-filed

========================

What are the U.S. imports of affected animals or animal products from the country?

Very few products that would be of risk for transmission of BSE were imported into the US from Greece during 2000 or 2001 (January - April). Due to the above mentioned import ban, no live ruminants, ruminant meat, meal made from ruminants, or other high risk products from ruminants were imported from Greece during this time period. In 2001 (January - April), 3000 kg of enzymes and prepared enzymes and 5 kg of medicants containing antibiotics for veterinary use were imported. The data do not provide a species of origin code for these products, therefore they may not contain any ruminant product.

Sources: World Trade Atlas

What is the level of passenger traffic arriving in the United States from the affected country?

Approximately 185,000 direct flights from Greece arrived to US airports in fiscal year 2000. Also, an unknown number of passengers from Greece arrived via indirect flights.

Under APHIS-PPQ's agriculture quarantine inspection monitoring, 584 air passengers from Greece were sampled for items of agricultural interest in fiscal year 2000. Of these passengers, 14 carried meat (non-pork) items that could potentially transmit pathogens that cause BSE; most passengers carried from one to two kilograms (kg) of meat, although one passenger in November 1999 carried 23 kg of meat in a suitcase. Florida, Massachusetts, and New York were the reported destinations of these passengers. None of the passengers with meat items reported plans to visit or work on a ranch or farm while in the US.

Source: US Department of Transportation, and APHIS-PPQ Agricultural Quarantine Inspection data base

http://www.aphis.usda.gov/vs/ceah/cei/bse_greece0701.htm

Greetings list members,

i just cannot accept this;

> 23 kg of meat in a suitcase (suitcase bomb...TSS)

> The data do not provide a species of origin code for these

> products, therefore they may not contain any ruminant product.

what kind of statement is this?

how stupid do they think we are?

it could also very well mean that _all_ of it was ruminant based products !

Terry S. Singeltary Sr., Bacliff, Texas USA

What is the level of passenger traffic arriving in the United States from Slovenia?

There were no direct flights from Slovenia to the US in fiscal year 2000.

APHIS-PPQ’s agriculture quarantine inspection monitoring sampled 27 air passengers from Slovenia for items of agricultural interest in fiscal year 2000. One of these 27 passengers was carrying two kilograms of a meat item that could potentially harbor pathogens that cause BSE. This passenger arrived to Elizabeth, New York, in June 2000 and declared no intention to visit a farm or ranch in the US.

Source: US Department of Transportation, and APHIS-PPQ Agricultural Quarantine Inspection data base

http://www.aphis.usda.gov/vs/ceah/cei/bse_slovenia1101.htm

What is the level of passenger traffic arriving in the United States from the affected country?

A total of 45,438 passengers arrived in the US on direct flights from the Czech Republic in fiscal year 2000. It is likely that additional passengers originating in the Czech Republic traveled to the US on non-direct flights.

As part of APHIS-PPQ’s Agriculture Quarantine Inspection Monitoring, 238 air passengers from the Czech Republic were inspected for items of agricultural interest in fiscal year 2000. Of these, 10, or 4.2%, were found to be carrying a total of 17 kg of items that could potentially present a risk for BSE. None of the passengers with items reported plans to visit or work on a farm or ranch while in the US.

Source: US Department of Transportation, and APHIS-PPQ Agricultural Quarantine Inspection data base

http://www.aphis.usda.gov/vs/ceah/cei/bse_cz0601.htm

What are the US imports of affected animals or animal products from Austria?

Between 1998 and June 2001, US imports from Austria included goat meat, animal feeds, and sausage. The sausage and animals feeds were from unspecified species.

Source: World Trade Atlas

snip...

What is the level of passenger traffic arriving in the United States from Austria?

A total of 168,598 passengers on direct flights from Austria arrived at US airports in fiscal year 2000. An undetermined number of passengers from Austria arrived in the US via indirect flights.

Under APHIS-PPQ’s agricultural quarantine inspection monitoring, 565 air passengers from Austria were sampled for items of agricultural interest in fiscal year 2000. Ten (10) of these passengers, or 1.7 percent, carried a total of 23 kg meat (non-pork) items that could potentially harbor the pathogen(s) that cause BSE. None of these passengers from whom meat items were confiscated reported plans to visit or work on a ranch or farm during their visit to the US.

Source: US Dept. of Transportation; APHIS-PPQ

http://www.aphis.usda.gov/vs/ceah/cei/bse_austria1201.htm

Greetings FDA and public,

if you go to the below site, and search all BSE known countries and check out their air traffic illegal meat they have confiscated, and check out the low number checked, compared to actual passenger traffic, would not take too much for some nut to bring in FMD/TSEs into the USA as a 'suitcase bomb'.

[[Under APHIS-PPQ's agricultural quarantine inspection monitoring, 284 air passengers from Israel were sampled for items of agricultural interest in fiscal year 2001. Seven of these passengers, or 2 percent, carried a total of 11 kg of meat items that could potentially harbor the pathogen that causes BSE. None of these passengers from whom meat items were confiscated reported plans to visit or work on a ranch or farm during their visit to the U.S.]]

if they were to have questioned the terrorist that bombed the Twin Towers with jets, if they were to have questioned them at flight school in the USA, i am sure that they would have said they did not intend to visit the Twin Towers as a flying bomb either. what am i thinking, they probably did ask this? stupid me.

[[In 1999 a small amount of non-species specific meat and offal was imported and a small amount of fetal bovine serum (FBS) was also imported. FBS is considered to have a relatively low risk of transmitting BSE.]]

more of the USA infamous 'non-species coding system', wonder how many of these species are capable of carrying a TSE?

snip...

A total of 524,401 passengers arrived on direct flights to the U.S. from Israel in fiscal year 2000. This number does not include passengers who arrived in the U.S. from Israel via indirect flights.

Under APHIS-PPQ's agricultural quarantine inspection monitoring, 284 air passengers from Israel were sampled for items of agricultural interest in fiscal year 2001. Seven of these passengers, or 2 percent, carried a total of 11 kg of meat items that could potentially harbor the pathogen that causes BSE. None of these passengers from whom meat items were confiscated reported plans to visit or work on a ranch or farm during their visit to the U.S.

http://www.aphis.usda.gov/vs/ceah/cei/bse_israel0602.htm

Source: U.S. Department of Transportation and APHIS-PPQ Agricultural Quarantine Inspection data base.

What is the level of passenger traffic arriving in the United States from Japan?

Approximately 6.84 million passengers on 29,826 direct flights from Japan arrived at US airports in fiscal year 2000. An undetermined number of passengers from Japan arrived in the US via indirect flights.

Under APHIS-PPQ's agriculture quarantine inspection monitoring, 801 air passengers from Japan were sampled for items of agricultural interest in fiscal year 2000. Of these 801 passengers, 10 carried meat (non-pork) items that could potentially harbor the pathogen(s) that cause BSE; most passengers carried an average of 1.7 kilograms of meat. None of these passengers from whom meat items were confiscated reported plans to visit or work on a ranch or farm during their visit to the US.

Source: US Department of Transportation, and APHIS-PPQ Agricultural Quarantine Inspection data base

http://www.aphis.usda.gov/vs/ceah/cei/bse_japan0901.htm

What is the level of passenger traffic arriving in the United States from the affected country?

A total of 3.3 million passengers arrived in the US on direct flights from Germany in 1998, although many of these passengers would not have originated in Germany. As part of APHIS-PPQ's Agriculture Quarantine Inspection Monitoring, 8,247 air passengers from Germany were inspected for items of agricultural interest. Of these, 198, or 2.3%, were found to be carrying a total of 304 kg of items that could potentially present a risk for BSE. Thirty (30) of the passengers with items reported plans to visit or work on a farm or ranch while in the US. Reported destination states of these 30 passengers were CA, CO, DE, FL, LA, MT, OH, VA, and WY.

Source: US Department of Transportation, and APHIS-PPQ Agricultural Quarantine Inspection data base

http://www.aphis.usda.gov/vs/ceah/cei/bse_germany1200e.htm

search archives at bottom of page of each BSE Country;

http://www.aphis.usda.gov/vs/ceah/cei/iw_archive.htm

more on non-species coding system and TSEs and potential 'suitcase bombs';

To: Bovine Spongiform Encephalopathy

Subject: Re: POLAND FINDS 4TH MAD COW CASE/USA IMPORTS FROM POLAND/non-species coding system strikes again

References: <[log in to unmask]>

Content-Type: text/plain; charset=ISO-8859-1; format=flowed

Content-Transfer-Encoding: 8bit

X-Virus-Scanner: Found to be clean

Greetings again List Members,

let me kick a madcow around here a bit.

on the imports from Poland and the infamous USA 'non-species' coding system.

the USDA/APHIS states;

> During the past four years (1998 - 2001), US imports from

> Poland included non-species specific animal products

> used in animal feeds and non-species specific sausage and offal

> products (Table 3). Given US restrictions on ruminant product

> imports, these US imports should not have contained ruminant

> material.

NOW, if you read Polands GBR risk assessment and opinion on BSE, especially _cross-contamination_, it states;

ANNEX 1

Poland - Summary of the GBR-Assessment, February 2001

EXTERNAL CHALLENGE STABILITY INTERACTION OF EXTERNAL CHALLENGE AND STABILITY

The very high to extremely high external challenge met a very unstable system and could have led to contamination of domestic cattle in Poland from 1987 onwards.

This internal challenge again met the still very unstable system and increased over time.

The continuing very high external challenge supported this development.

Not OK MBM-ban since 1997, but no feed controls. Reasonably OK Heat treatment equivalent to 133°C / 20min / 3 bar standards, but no evidence provided on compliance.

Not OK. No SRM-ban, SRM are rendered and included in cattle feed.

BSE surveillance:

Not sufficient before 2001.

Cross-contamination:

Lines for ruminant and non-ruminant feed in feed-mills only separated in time and no analytical controls carried out. Likely present since 1987 and growing.

see full text and ANNEX 1 at;

http://europa.eu.int/comm/food/fs/sc/ssc/out185_en.pdf

so in my humble opinion, the statement by the USDA/APHIS that ''these US imports _should_ not have contained ruminant materials, is a joke. a sad joke indeed.

* POLAND BSE GBR RISK ASSESSMENT

http://europa.eu.int/comm/food/fs/sc/ssc/out185_en.pdf

BSE ISRAEL change in disease status, AND THE DAMN NON-SPECIES CODING SYSTEM $$$

Subject: BSE ISRAEL change in disease status, AND THE DAMN NON-SPECIES CODING SYSTEM $$$

Date: November 1, 2002 at 8:03 am PST

[Federal Register: November 1, 2002 (Volume 67, Number 212)]

DEPARTMENT OF AGRICULTURE

Animal and Plant Health Inspection Service

9 CFR Part 94

[Docket No. 02-072-2]

Change in Disease Status of Israel Because of BSE

AGENCY: Animal and Plant Health Inspection Service, USDA.

ACTION: Affirmation of interim rule as final rule.

-----------------------------------------------------------------------

SUMMARY: We are adopting as a final rule, without change, an interim rule that amended the regulations by adding Israel to the list of regions where bovine spongiform encephalopathy exists because the disease had been detected in a native-born animal in that region. The effect of the interim rule was a restriction on the importation of ruminants, meat, meat products, and certain other products of ruminants that had been in Israel. The interim rule was necessary to help prevent the introduction of bovine spongiform encephalopathy into the United States.

EFFECTIVE DATE: The interim rule became effective on June 4, 2002.

FOR FURTHER INFORMATION CONTACT: Dr. Gary Colgrove, Chief Staff Veterinarian, Sanitary Trade Issues Team, National Center for Import and Export, VS, APHIS, 4700 River Road Unit 38, Riverdale, MD 20737- 1231; (301) 734-4356.

SUPPLEMENTARY INFORMATION:

Background

The regulations in 9 CFR parts 93, 94, 95, and 96 (referred to below as the regulations) govern the importation of certain animals, birds, poultry, meat, other animal products and byproducts, hay, and straw into the United States in order to prevent the introduction of various animal diseases, including bovine spongiform encephalopathy (BSE).

In an interim rule effective June 4, 2002, and published in the Federal Register on July 18, 2002 (67 FR 47243-47244, Docket No. 02- 072-1), we amended the regulations in Sec. 94.18 (a)(1) by adding Israel to the list of regions where BSE exists due to the detection of BSE in a native-born animal in that region.

Comments on the interim rule were required to be received on or before September 16, 2002. We did not receive any comments. Therefore, for the reasons given in the interim rule, we are adopting the interim rule as a final rule.

This action also affirms the information contained in the interim rule concerning Executive Orders 12866 and 12988 and the Paperwork Reduction Act.

Further, for this action, the Office of Management and Budget has waived its review under Executive Order 12866.

Regulatory Flexibility Act

This action affirms an interim rule that amended the regulations by adding Israel to the list of regions where BSE exists. The effect of the interim rule was a restriction on the importation of ruminants, meat, meat products, and certain other products of ruminants that had been in Israel. The interim rule was necessary to help prevent the introduction of BSE into the United States.

The following analysis addresses the economic effects of the interim rule on small entities, as required by the Regulatory Flexibility Act.

The interim rule's restrictions on the importation of ruminants and ruminant products and byproducts from Israel are not expected to have a significant impact on a substantial number of small entities due to the fact that the restricted items are either not imported from Israel or are imported in very small amounts. There are three categories of imports that may be affected, but Israel's share of U.S. imports is small in each case.

The first category of affected imported commodities is ``Meat and edible meat offal, salted in brine, dried or smoked; edible flours and meals of meat or meat offal.'' Average total yearly imports of these products by the United States over the 3-year period 1999-2001 were valued at $24.6 million. Imports from Israel in 1999 were valued at $26,000. No imports of these products from Israel were reported for 2000 or 2001.

The second category of affected commodities is ``Preparations of a kind used in animal feeding.'' Average total yearly imports of these products, 1999-2001, were valued at $93.5 million. Imports from Israel had an average yearly value over this period of about $76,000. The final category of affected commodities is ``Other prepared or preserved meat, meat offal or blood.'' Average yearly imports of these products, 1999-2001, were valued at $101.2 million. Imports from Israel had an average yearly value over this period of about $2.7 million. It is apparent that Israel is a minor supplier to the United States of the ruminant products and byproducts affected by the BSE-related restrictions resulting from the interim rule. Therefore, we do not expect that the interim rule's restrictions on ruminants and ruminant products and byproducts from Israel will substantially affect any U.S. importers, large or small, of those commodities.

Under these circumstances, the Administrator of the Animal and Plant Health Inspection Service has determined that this action will not have a significant economic impact on a substantial number of small entities.

List of Subjects in 9 CFR Part 94

Animal diseases, Imports, Livestock, Meat and meat products, Milk, Poultry and poultry products, Reporting and recordkeeping requirements.

PART 94--RINDERPEST, FOOT-AND-MOUTH DISEASE, FOWL PEST (FOWL PLAGUE), EXOTIC NEWCASTLE DISEASE, AFRICAN SWINE FEVER, HOG CHOLERA, AND BOVINE SPONGIFORM ENCEPHALOPATHY: PROHIBITED AND RESTRICTED IMPORTATIONS

Accordingly, we are adopting as a final rule, without change, the interim rule that amended 9 CFR part 94 and that was published at 67 FR 47243-47244 on July 18, 2002.

Authority: 7 U.S.C. 450, 7711-7714, 7751, 7754, 8303, 8306, 8308, 8310, 8311, and 8315; 21 U.S.C 136 and 136a; 31 U.S.C. 9701; 42 U.S.C. 4331 and 4332; 7 CFR 2.22, 2.80, and 371.4.

Done in Washington, DC, this 28th day of October, 2002. Bobby R. Acord, Administrator, Animal and Plant Health Inspection Service. [FR Doc. 02-27812 Filed 10-31-02; 8:45 am] BILLING CODE 3410-34-P

http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=2002_register&docid=02-27812-filed

greetings List members,

MORE OF THE INFAMOUS USA NON-SPECIES CODING SYSTEM.

as long as the exporting country and the importing country know not what they are exporting (play dumb/stupid), this non-species coding system allows potential BSE/TSE materials to be imported and exported freely and legally...

TSS

What are the U.S. imports of affected animals or animal products from Israel?

The U.S. imported no live ruminants or ruminant meat from Israel since 1999. In 1999 a small amount of non-species specific meat and offal was imported and a small amount of fetal bovine serum (FBS) was also imported. FBS is considered to have a relatively low risk of transmitting BSE. Other imports from Israel during the period 1998-2001 included non-species specific preparations used in animal feeds and other non-food products of unspecified animals. For the category "preparations used in animal feeding, NESOI" that was imported into the U.S., it is possible that bovine meat or bovine byproducts could have been included in this category. However, the US Food and Drug Administration prohibits feeding of meat-and-bone meal to ruminants in the U.S.

HS Code

Description

Unit

1998

1999

2000

2001

Feed - non species specific

Total

45,030

48,000

50,649

43,000

2309909500

Preparations Used in Animal Feedings, NESOI

KG

45,030

48,000

50,649

43,000

Meat & offal- non species specific

Total

5

0

0

0

300110

Dried Organs

KG

5

0

0

0

Other animal products - ruminants

Total

24

0

0

0

3002100040

Fetal Bovine Serum (FBS)

KG

24

0

0

0

Source: World Trade Atlas

What is the level of passenger traffic arriving in the United States from Israel?

A total of 524,401 passengers arrived on direct flights to the U.S. from Israel in fiscal year 2000. This number does not include passengers who arrived in the U.S. from Israel via indirect flights.

Under APHIS-PPQ?s agricultural quarantine inspection monitoring, 284 air passengers from Israel were sampled for items of agricultural interest in fiscal year 2001. Seven of these passengers, or 2 percent, carried a total of 11 kg of meat items that could potentially harbor the pathogen that causes BSE. None of these passengers from whom meat items were confiscated reported plans to visit or work on a ranch or farm during their visit to the U.S.

Source: U.S. Department of Transportation and APHIS-PPQ Agricultural Quarantine Inspection data base.

http://www.aphis.usda.gov/vs/ceah/cei/bse_israel0602.htm

TSS

Docket Management

Docket: 02N-0276 - Bioterrorism Preparedness; Registration of Food Facilities, Section 305

Comment Number: EC -254

Accepted - Volume 11

http://www.fda.gov/OHRMS/DOCKETS/DOCKETS/02n0276/02N-0276-EC-254.htm

http://web.archive.org/web/20041012090622/http://www.fda.gov/OHRMS/DOCKETS/DOCKETS/02n0276/02N-0276-EC-254.htm

2023

FRIDAY, FEBRUARY 03, 2023 

Netherlands Bovine Spongiform Encephalopathy BSE, atypical strain, L-type 


Thursday, February 2, 2023 

EFSA OIE WOHA UPDATES ON CHRONIC WASTING DISEASE CWD TSE PrP ZOONOSIS


Given that cattle have been successfully infected by the oral route, at least for L-BSE, it is reasonable to conclude that atypical BSE is potentially capable of being recycled in a cattle population if cattle are exposed to contaminated feed. In addition, based on reports of atypical BSE from several countries that have not had C-BSE, it appears likely that atypical BSE would arise as a spontaneous disease in any country, albeit at a very low incidence in old cattle. In the presence of livestock industry practices that would allow it to be recycled in the cattle feed chain, it is likely that some level of exposure and transmission may occur. As a result, since atypical BSE can be reasonably considered to pose a potential background level of risk for any country with cattle, the recycling of both classical and atypical strains in the cattle and broader ruminant populations should be avoided. 


OIE Conclusions on transmissibility of atypical BSE among cattle

Given that cattle have been successfully infected by the oral route, at least for L-BSE, it is reasonable to conclude that atypical BSE is potentially capable of being recycled in a cattle population if cattle are exposed to contaminated feed. In addition, based on reports of atypical BSE from several countries that have not had C-BSE, it appears likely that atypical BSE would arise as a spontaneous disease in any country, albeit at a very low incidence in old cattle. In the presence of livestock industry practices that would allow it to be recycled in the cattle feed chain, it is likely that some level of exposure and transmission may occur. As a result, since atypical BSE can be reasonably considered to pose a potential background level of risk for any country with cattle, the recycling of both classical and atypical strains in the cattle and broader ruminant populations should be avoided. 


Annex 7 (contd) AHG on BSE risk assessment and surveillance/March 2019

34 Scientific Commission/September 2019

3. Atypical BSE

The Group discussed and endorsed with minor revisions an overview of relevant literature on the risk of atypical BSE being recycled in a cattle population and its zoonotic potential that had been prepared ahead of the meeting by one expert from the Group. This overview is provided as Appendix IV and its main conclusions are outlined below. With regard to the risk of recycling of atypical BSE, recently published research confirmed that the L-type BSE prion (a type of atypical BSE prion) may be orally transmitted to calves1 . In light of this evidence, and the likelihood that atypical BSE could arise as a spontaneous disease in any country, albeit at a very low incidence, the Group was of the opinion that it would be reasonable to conclude that atypical BSE is potentially capable of being recycled in a cattle population if cattle were to be exposed to contaminated feed. Therefore, the recycling of atypical strains in cattle and broader ruminant populations should be avoided.

The Group acknowledged the challenges in demonstrating the zoonotic transmission of atypical strains of BSE in natural exposure scenarios. Overall, the Group was of the opinion that, at this stage, it would be premature to reach a conclusion other than that atypical BSE poses a potential zoonotic risk that may be different between atypical strains.

4. Definitions of meat-and-bone meal (MBM) and greaves

snip...

REFERENCES

SNIP...END SEE FULL TEXT;


Consumption of L-BSE–contaminated feed may pose a risk for oral transmission of the disease agent to cattle.


Thus, it is imperative to maintain measures that prevent the entry of tissues from cattle possibly infected with the agent of L-BSE into the food chain.


We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period, with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold longe incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014), is the third potentially zoonotic PD (with BSE and L-type BSE), thus questioning the origin of human sporadic cases. We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health.


2.3.2. New evidence on the zoonotic potential of atypical BSE and atypical scrapie prion strains

Olivier Andreoletti, INRA Research Director, Institut National de la Recherche Agronomique (INRA) – École Nationale Vétérinaire de Toulouse (ENVT), invited speaker, presented the results of two recently published scientific articles of interest, of which he is co-author:

‘Radical Change in Zoonotic Abilities of Atypical BSE Prion Strains as Evidenced by Crossing of Sheep Species Barrier in Transgenic Mice’ (MarinMoreno et al., 2020) and ‘The emergence of classical BSE from atypical/Nor98 scrapie’ (Huor et al., 2019).

In the first experimental study, H-type and L-type BSE were inoculated into transgenic mice expressing all three genotypes of the human PRNP at codon 129 and into adapted into ARQ and VRQ transgenic sheep mice. The results showed the alterations of the capacities to cross the human barrier species (mouse model) and emergence of sporadic CJD agents in Hu PrP expressing mice: type 2 sCJD in homozygous TgVal129 VRQ-passaged L-BSE, and type 1 sCJD in homozygous TgVal 129 and TgMet129 VRQ-passaged H-BSE. 


This study demonstrates that the H-type BSE agent is transmissible by the oronasal route. These results reinforce the need for ongoing surveillance for classical and atypical BSE to minimize the risk of potentially infectious tissues entering the animal or human food chains.


P98 The agent of H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism transmits after oronasal challenge 

Greenlee JJ (1), Moore SJ (1), and West Greenlee MH (2) (1) United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, IA, United States (2) Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States. 

With the experiment currently at 55 months post-inoculation, no other cattle in this study have developed clinical signs suggestive of prion disease. This study demonstrates that the H-type BSE agent is transmissible by the oronasal route. 

These results reinforce the need for ongoing surveillance for classical and atypical BSE to minimize the risk of potentially infectious tissues entering the animal or human food chains. 

PRION CONFERENCE 2018 CONFERENCE ABSTRACT

Published: 23 June 2011

Experimental H-type bovine spongiform encephalopathy characterized by plaques and glial- and stellate-type prion protein deposits

The present study demonstrated successful intraspecies transmission of H-type BSE to cattle and the distribution and immunolabeling patterns of PrPSc in the brain of the H-type BSE-challenged cattle. TSE agent virulence can be minimally defined by oral transmission of different TSE agents (C-type, L-type, and H-type BSE agents) [59]. Oral transmission studies with H-type BSE-infected cattle have been initiated and are underway to provide information regarding the extent of similarity in the immunohistochemical and molecular features before and after transmission. In addition, the present data will support risk assessments in some peripheral tissues derived from cattle affected with H-type BSE.

References...END


***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***

Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.


O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations 

Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France 

Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases). 

Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods. 

*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period, 

***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014), 

***is the third potentially zoonotic PD (with BSE and L-type BSE), 

***thus questioning the origin of human sporadic cases. 

We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health. 

=============== 

***thus questioning the origin of human sporadic cases*** 

=============== 

***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals. 

============== 

PRION 2015 CONFERENCE


***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. 

***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 


PRION 2016 TOKYO

Saturday, April 23, 2016

SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016

Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online

Taylor & Francis

Prion 2016 Animal Prion Disease Workshop Abstracts

WS-01: Prion diseases in animals and zoonotic potential

Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 


Title: Transmission of scrapie prions to primate after an extended silent incubation period) 

*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS. 

*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated. 

*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains. 


Sunday, January 10, 2021 

APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087] Singeltary Submission June 17, 2019

APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087] Singeltary Submission

Greetings APHIS et al, 

I would kindly like to comment on APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087], and my comments are as follows, with the latest peer review and transmission studies as references of evidence.

THE OIE/USDA BSE Minimal Risk Region MRR is nothing more than free pass to import and export the Transmissible Spongiform Encephalopathy TSE Prion disease. December 2003, when the USDA et al lost it's supposedly 'GOLD CARD' ie BSE FREE STATUS (that was based on nothing more than not looking and not finding BSE), once the USA lost it's gold card BSE Free status, the USDA OIE et al worked hard and fast to change the BSE Geographical Risk Statuses i.e. the BSE GBR's, and replaced it with the BSE MRR policy, the legal tool to trade mad cow type disease TSE Prion Globally. The USA is doing just what the UK did, when they shipped mad cow disease around the world, except with the BSE MRR policy, it's now legal. 

Also, the whole concept of the BSE MRR policy is based on a false pretense, that atypical BSE is not transmissible, and that only typical c-BSE is transmissible via feed. This notion that atypical BSE TSE Prion is an old age cow disease that is not infectious is absolutely false, there is NO science to show this, and on the contrary, we now know that atypical BSE will transmit by ORAL ROUTES, but even much more concerning now, recent science has shown that Chronic Wasting Disease CWD TSE Prion in deer and elk which is rampant with no stopping is sight in the USA, and Scrapie TSE Prion in sheep and goat, will transmit to PIGS by oral routes, this is our worst nightmare, showing even more risk factors for the USA FDA PART 589 TSE PRION FEED ban. 

The FDA PART 589 TSE PRION FEED ban has failed terribly bad, and is still failing, since August 1997. there is tonnage and tonnage of banned potential mad cow feed that went into commerce, and still is, with one decade, 10 YEARS, post August 1997 FDA PART 589 TSE PRION FEED ban, 2007, with 10,000,000 POUNDS, with REASON, Products manufactured from bulk feed containing blood meal that was cross contaminated with prohibited meat and bone meal and the labeling did not bear cautionary BSE statement. you can see all these feed ban warning letters and tonnage of mad cow feed in commerce, year after year, that is not accessible on the internet anymore like it use to be, you can see history of the FDA failure August 1997 FDA PART 589 TSE PRION FEED ban here, but remember this, we have a new outbreak of TSE Prion disease in a new livestock species, the camel, and this too is very worrisome.

WITH the OIE and the USDA et al weakening the global TSE prion surveillance, by not classifying the atypical Scrapie as TSE Prion disease, and the notion that they want to do the same thing with typical scrapie and atypical BSE, it's just not scientific.

WE MUST abolish the BSE MRR policy, go back to the BSE GBR risk assessments by country, and enhance them to include all strains of TSE Prion disease in all species. With Chronic Wasting CWD TSE Prion disease spreading in Europe, now including, Norway, Finland, Sweden, also in Korea, Canada and the USA, and the TSE Prion in Camels, the fact the the USA is feeding potentially CWD, Scrapie, BSE, typical and atypical, to other animals, and shipping both this feed and or live animals or even grains around the globe, potentially exposed or infected with the TSE Prion. this APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087], under it's present definition, does NOT show the true risk of the TSE Prion in any country. as i said, it's nothing more than a legal tool to trade the TSE Prion around the globe, nothing but ink on paper.

AS long as the BSE MRR policy stays in effect, TSE Prion disease will continued to be bought and sold as food for both humans and animals around the globe, and the future ramifications from friendly fire there from, i.e. iatrogenic exposure and transmission there from from all of the above, should not be underestimated. ...



APHIS Indemnity Regulations [Docket No. APHIS-2021-0010] RIN 0579-AE65 Singeltary Comment Submission

Comment from Singeltary Sr., Terry

Posted by the Animal and Plant Health Inspection Service on Sep 8, 2022




SPECIFIED RISK MATERIALS DOCKET NUMBER DOCKET NO. FSIS-2022-0027 SINGELTARY SUBMISSION ATTACHMENT



SO, WHO'S UP FOR SOME MORE TSE PRION POKER, WHO'S ALL IN $$$ 

SO, ATYPICAL SCRAPIE ROUGHLY HAS 50 50 CHANCE ATYPICAL SCRAPIE IS CONTAGIOUS, AS NON-CONTAGIOUS, TAKE YOUR PICK, BUT I SAID IT LONG AGO WHEN USDA OIE ET AL MADE ATYPICAL SCRAPIE A LEGAL TRADING COMMODITY, I SAID YOUR PUTTING THE CART BEFORE THE HORSE, AND THAT'S EXACTLY WHAT THEY DID, and it's called in Texas, TEXAS TSE PRION HOLDEM POKER, WHO'S ALL IN $$$

***> AS is considered more likely (subjective probability range 50–66%) that AS is a non-contagious, rather than a contagious, disease.

SNIP...SEE;

THURSDAY, JULY 8, 2021 

EFSA Scientific report on the analysis of the 2‐year compulsory intensified monitoring of atypical scrapie





WEDNESDAY, NOVEMBER 30, 2022 

USDA Bovine Spongiform Encephalopathy BSE, Scrapie, CWD, Testing and Surveillance 2022 A Review of History 


SUNDAY, OCTOBER 16, 2022 

USDA Transmissible Spongiform Encephalopathy TSE Prion Action Plan National Program 103 Animal Health 2022-2027 


TUESDAY, MAY 31, 2022 

USA Bovine Spongiform Encephalopathy BSE: description of typical and atypical cases 


TUESDAY, SEPTEMBER 13, 2022 

BSE pathogenesis in the ileal Peyer’s patches and the central and peripheral nervous system of young cattle 8 months post oral BSE challenge


TUESDAY, SEPTEMBER 07, 2021

Atypical Bovine Spongiform Encephalopathy BSE OIE, FDA 589.2001 FEED REGULATIONS, and Ingestion Therefrom


Bovine Spongiform Encephalopathy BSE TSE Prion Origin USA


WEDNESDAY, JANUARY 12, 2022 

Bovine Spongiform Encephalopathy BSE TSE Prion Origin USA, what if?


Terry S. Singeltary Sr.