Brazil Suspected case of Bovine Spongiform Encephalopathy
COMUNICADO
Caso suspeito de Encefalopatia Espongiforme Bovina
para Copiar para área de transferência Publicado em 20/02/2023 15h36
Atualizado em 20/02/2023 15h39 O
Ministério da Agricultura e Pecuária (Mapa) informa que, acerca do caso suspeito de Encefalopatia Espongiforme Bovina (Mal da "vaca louca"), todas as medidas estão sendo adotadas pelos governos.
A suspeita já foi submetida a análise laboratorial para a confirmação ou não e, a partir do resultado, serão aplicadas imediatamente as ações cabíveis.
Informações à Imprensa
imprensa@agro.gov.br
=====
COMMUNICATE
Suspected case of bovine spongiform encephalopathy
to Copy to clipboard Posted on 2/20/2023 3:36 PM
Updated on 02/20/2023 3:39 pm The
Ministry of Agriculture and Livestock (MAPA) informs that, regarding the suspected case of Bovine Spongiform Encephalopathy ("Mad Cow Disease"), all measures are being adopted by governments.
The suspicion has already been submitted to laboratory analysis for confirmation or not and, based on the result, the appropriate actions will be applied immediately.
''Atypical BSE, on the hand, is a naturally and sporadically occurring form, which are believed to occur in all cattle populations at a very low rate.''
LOL!
you need to update your science imo...
kind regards, terry
OIE Conclusions on transmissibility of atypical BSE among cattle
Given that cattle have been successfully infected by the oral route, at least for L-BSE, it is reasonable to conclude that atypical BSE is potentially capable of being recycled in a cattle population if cattle are exposed to contaminated feed. In addition, based on reports of atypical BSE from several countries that have not had C-BSE, it appears likely that atypical BSE would arise as a spontaneous disease in any country, albeit at a very low incidence in old cattle. In the presence of livestock industry practices that would allow it to be recycled in the cattle feed chain, it is likely that some level of exposure and transmission may occur. As a result, since atypical BSE can be reasonably considered to pose a potential background level of risk for any country with cattle, the recycling of both classical and atypical strains in the cattle and broader ruminant populations should be avoided.
Annex 7 (contd) AHG on BSE risk assessment and surveillance/March 2019
34 Scientific Commission/September 2019
3. Atypical BSE
The Group discussed and endorsed with minor revisions an overview of relevant literature on the risk of atypical BSE being recycled in a cattle population and its zoonotic potential that had been prepared ahead of the meeting by one expert from the Group. This overview is provided as Appendix IV and its main conclusions are outlined below. With regard to the risk of recycling of atypical BSE, recently published research confirmed that the L-type BSE prion (a type of atypical BSE prion) may be orally transmitted to calves1 . In light of this evidence, and the likelihood that atypical BSE could arise as a spontaneous disease in any country, albeit at a very low incidence, the Group was of the opinion that it would be reasonable to conclude that atypical BSE is potentially capable of being recycled in a cattle population if cattle were to be exposed to contaminated feed. Therefore, the recycling of atypical strains in cattle and broader ruminant populations should be avoided.
The Group acknowledged the challenges in demonstrating the zoonotic transmission of atypical strains of BSE in natural exposure scenarios. Overall, the Group was of the opinion that, at this stage, it would be premature to reach a conclusion other than that atypical BSE poses a potential zoonotic risk that may be different between atypical strains.
4. Definitions of meat-and-bone meal (MBM) and greaves
snip...
REFERENCES
SNIP...END SEE FULL TEXT;
Consumption of L-BSE–contaminated feed may pose a risk for oral transmission of the disease agent to cattle.
Thus, it is imperative to maintain measures that prevent the entry of tissues from cattle possibly infected with the agent of L-BSE into the food chain.
We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period, with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold longe incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014), is the third potentially zoonotic PD (with BSE and L-type BSE), thus questioning the origin of human sporadic cases. We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health.
2.3.2. New evidence on the zoonotic potential of atypical BSE and atypical scrapie prion strains
Olivier Andreoletti, INRA Research Director, Institut National de la Recherche Agronomique (INRA) – École Nationale Vétérinaire de Toulouse (ENVT), invited speaker, presented the results of two recently published scientific articles of interest, of which he is co-author:
‘Radical Change in Zoonotic Abilities of Atypical BSE Prion Strains as Evidenced by Crossing of Sheep Species Barrier in Transgenic Mice’ (MarinMoreno et al., 2020) and ‘The emergence of classical BSE from atypical/Nor98 scrapie’ (Huor et al., 2019).
In the first experimental study, H-type and L-type BSE were inoculated into transgenic mice expressing all three genotypes of the human PRNP at codon 129 and into adapted into ARQ and VRQ transgenic sheep mice. The results showed the alterations of the capacities to cross the human barrier species (mouse model) and emergence of sporadic CJD agents in Hu PrP expressing mice: type 2 sCJD in homozygous TgVal129 VRQ-passaged L-BSE, and type 1 sCJD in homozygous TgVal 129 and TgMet129 VRQ-passaged H-BSE.
This study demonstrates that the H-type BSE agent is transmissible by the oronasal route. These results reinforce the need for ongoing surveillance for classical and atypical BSE to minimize the risk of potentially infectious tissues entering the animal or human food chains.
***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***
Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.
O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations
Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France
Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases).
Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods.
*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period,
***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014),
***is the third potentially zoonotic PD (with BSE and L-type BSE),
***thus questioning the origin of human sporadic cases.
We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health.
===============
***thus questioning the origin of human sporadic cases***
===============
***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals.
==============
PRION 2015 CONFERENCE
***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice.
***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion.
***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.
PRION 2016 TOKYO
Saturday, April 23, 2016
SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016
Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online
Taylor & Francis
Prion 2016 Animal Prion Disease Workshop Abstracts
WS-01: Prion diseases in animals and zoonotic potential
Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion.
These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.
Title: Transmission of scrapie prions to primate after an extended silent incubation period)
*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS.
*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated.
*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains.
Sunday, January 10, 2021
APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087] Singeltary Submission June 17, 2019
APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087] Singeltary Submission
Greetings APHIS et al,
I would kindly like to comment on APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087], and my comments are as follows, with the latest peer review and transmission studies as references of evidence.
THE OIE/USDA BSE Minimal Risk Region MRR is nothing more than free pass to import and export the Transmissible Spongiform Encephalopathy TSE Prion disease. December 2003, when the USDA et al lost it's supposedly 'GOLD CARD' ie BSE FREE STATUS (that was based on nothing more than not looking and not finding BSE), once the USA lost it's gold card BSE Free status, the USDA OIE et al worked hard and fast to change the BSE Geographical Risk Statuses i.e. the BSE GBR's, and replaced it with the BSE MRR policy, the legal tool to trade mad cow type disease TSE Prion Globally. The USA is doing just what the UK did, when they shipped mad cow disease around the world, except with the BSE MRR policy, it's now legal.
Also, the whole concept of the BSE MRR policy is based on a false pretense, that atypical BSE is not transmissible, and that only typical c-BSE is transmissible via feed. This notion that atypical BSE TSE Prion is an old age cow disease that is not infectious is absolutely false, there is NO science to show this, and on the contrary, we now know that atypical BSE will transmit by ORAL ROUTES, but even much more concerning now, recent science has shown that Chronic Wasting Disease CWD TSE Prion in deer and elk which is rampant with no stopping is sight in the USA, and Scrapie TSE Prion in sheep and goat, will transmit to PIGS by oral routes, this is our worst nightmare, showing even more risk factors for the USA FDA PART 589 TSE PRION FEED ban.
The FDA PART 589 TSE PRION FEED ban has failed terribly bad, and is still failing, since August 1997. there is tonnage and tonnage of banned potential mad cow feed that went into commerce, and still is, with one decade, 10 YEARS, post August 1997 FDA PART 589 TSE PRION FEED ban, 2007, with 10,000,000 POUNDS, with REASON, Products manufactured from bulk feed containing blood meal that was cross contaminated with prohibited meat and bone meal and the labeling did not bear cautionary BSE statement. you can see all these feed ban warning letters and tonnage of mad cow feed in commerce, year after year, that is not accessible on the internet anymore like it use to be, you can see history of the FDA failure August 1997 FDA PART 589 TSE PRION FEED ban here, but remember this, we have a new outbreak of TSE Prion disease in a new livestock species, the camel, and this too is very worrisome.
WITH the OIE and the USDA et al weakening the global TSE prion surveillance, by not classifying the atypical Scrapie as TSE Prion disease, and the notion that they want to do the same thing with typical scrapie and atypical BSE, it's just not scientific.
WE MUST abolish the BSE MRR policy, go back to the BSE GBR risk assessments by country, and enhance them to include all strains of TSE Prion disease in all species. With Chronic Wasting CWD TSE Prion disease spreading in Europe, now including, Norway, Finland, Sweden, also in Korea, Canada and the USA, and the TSE Prion in Camels, the fact the the USA is feeding potentially CWD, Scrapie, BSE, typical and atypical, to other animals, and shipping both this feed and or live animals or even grains around the globe, potentially exposed or infected with the TSE Prion. this APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087], under it's present definition, does NOT show the true risk of the TSE Prion in any country. as i said, it's nothing more than a legal tool to trade the TSE Prion around the globe, nothing but ink on paper.
AS long as the BSE MRR policy stays in effect, TSE Prion disease will continued to be bought and sold as food for both humans and animals around the globe, and the future ramifications from friendly fire there from, i.e. iatrogenic exposure and transmission there from from all of the above, should not be underestimated. ...
APHIS Indemnity Regulations [Docket No. APHIS-2021-0010] RIN 0579-AE65 Singeltary Comment Submission
Comment from Singeltary Sr., Terry
Posted by the Animal and Plant Health Inspection Service on Sep 8, 2022
SPECIFIED RISK MATERIALS DOCKET NUMBER DOCKET NO. FSIS-2022-0027 SINGELTARY SUBMISSION ATTACHMENT
SO, WHO'S UP FOR SOME MORE TSE PRION POKER, WHO'S ALL IN $$$
SO, ATYPICAL SCRAPIE ROUGHLY HAS 50 50 CHANCE ATYPICAL SCRAPIE IS CONTAGIOUS, AS NON-CONTAGIOUS, TAKE YOUR PICK, BUT I SAID IT LONG AGO WHEN USDA OIE ET AL MADE ATYPICAL SCRAPIE A LEGAL TRADING COMMODITY, I SAID YOUR PUTTING THE CART BEFORE THE HORSE, AND THAT'S EXACTLY WHAT THEY DID, and it's called in Texas, TEXAS TSE PRION HOLDEM POKER, WHO'S ALL IN $$$
***> AS is considered more likely (subjective probability range 50–66%) that AS is a non-contagious, rather than a contagious, disease.
SNIP...SEE;
THURSDAY, JULY 8, 2021
EFSA Scientific report on the analysis of the 2‐year compulsory intensified monitoring of atypical scrapie
TUESDAY, MAY 31, 2022
USA Bovine Spongiform Encephalopathy BSE: description of typical and atypical cases
TUESDAY, SEPTEMBER 07, 2021
Atypical Bovine Spongiform Encephalopathy BSE OIE, FDA 589.2001 FEED REGULATIONS, and Ingestion Therefrom
TUESDAY, SEPTEMBER 13, 2022
BSE pathogenesis in the ileal Peyer’s patches and the central and peripheral nervous system of young cattle 8 months post oral BSE challenge
TUESDAY, SEPTEMBER 07, 2021
Atypical Bovine Spongiform Encephalopathy BSE OIE, FDA 589.2001 FEED REGULATIONS, and Ingestion Therefrom
Bovine Spongiform Encephalopathy BSE TSE Prion Origin USA
WEDNESDAY, JANUARY 12, 2022
Bovine Spongiform Encephalopathy BSE TSE Prion Origin USA, what if?
PLOS ONE Journal
*** Singeltary reply ; Molecular, Biochemical and Genetic Characteristics of BSE in Canada Singeltary reply ;
IBNC Tauopathy or TSE Prion disease, it appears, no one is sure
Terry S. Singeltary Sr., 03 Jul 2015 at 16:53 GMT
***however in 1 C-type challenged animal, Prion 2015 Poster Abstracts S67 PrPsc was not detected using rapid tests for BSE.
***Subsequent testing resulted in the detection of pathologic lesion in unusual brain location and PrPsc detection by PMCA only.
*** IBNC Tauopathy or TSE Prion disease, it appears, no one is sure ***
MONDAY, SEPTEMBER 19, 2022
589.2001 BSE TSE regulations which prohibits the use of high-risk cattle material in feed for all animal species 2022
SATURDAY, SEPTEMBER 24, 2022
Transmission of CH1641 in cattle
FRIDAY, APRIL 1, 2022
USDA TAKES THE C OUT OF COOL, what's up with that?
MONDAY, JUNE 6, 2022
APHIS USDA History Highlight: APHIS Combats Bovine Spongiform Encephalopathy Published Jun 1, 2022
MONDAY, NOVEMBER 30, 2020
***> REPORT OF THE MEETING OF THE OIE SCIENTIFIC COMMISSION FOR ANIMAL DISEASES Paris, 9–13 September 2019 BSE, TSE, PRION
see updated concerns with atypical BSE from feed and zoonosis...terry
WEDNESDAY, DECEMBER 8, 2021
Importation of Sheep, Goats, and Certain Other Ruminants AGENCY: Animal APHIA, USDA, FINAL RULE [Docket No. APHIS–2009–0095] RIN 0579–AD10
WEDNESDAY, MARCH 24, 2021
USDA Animal and Plant Health Inspection Service 2020 IMPACT REPORT BSE TSE Prion Testing and Surveillance MIA
https://animalhealthreportpriontse.blogspot.com/2021/03/usda-animal-and-plant-health-inspection.html
SUNDAY, MARCH 21, 2021
Investigation Results of Texas Cow That Tested Positive for Bovine Spongiform Encephalopathy (BSE) Aug. 30, 2005 Singeltary's Regiew 2021
https://animalhealthreportpriontse.blogspot.com/2021/03/investigation-results-of-texas-cow-that.html
THURSDAY, AUGUST 20, 2020
Why is USDA "only" BSE TSE Prion testing 25,000 samples a year?
THURSDAY, JANUARY 23, 2020
USDA Consolidates Regulations for NAHLN Laboratory Testing USDA Animal and Plant Health Inspection Service
sent this bulletin at 01/23/2020 02:15 PM EST
WEDNESDAY, APRIL 24, 2019
USDA Announces Atypical Bovine Spongiform Encephalopathy Detection Aug 29, 2018 A Review of Science 2019
Saturday, July 23, 2016
BOVINE SPONGIFORM ENCEPHALOPATHY BSE TSE PRION SURVEILLANCE, TESTING, AND SRM REMOVAL UNITED STATE OF AMERICA UPDATE JULY 2016
Tuesday, July 26, 2016
Atypical Bovine Spongiform Encephalopathy BSE TSE Prion UPDATE JULY 2016
Monday, June 20, 2016
Specified Risk Materials SRMs BSE TSE Prion Program
*** PLEASE SEE THIS URGENT UPDATE ON CWD AND FEED ANIMAL PROTEIN ***
Sunday, March 20, 2016
Docket No. FDA-2003-D-0432 (formerly 03D-0186) Use of Material from Deer and Elk in Animal Feed ***UPDATED MARCH 2016*** Singeltary Submission
SEE MAD COW FEED VIOLATIONS AFER MAD COW FEED VIOLATIONS ;
Tuesday, April 19, 2016
Docket No. FDA-2013-N-0764 for Animal Feed Regulatory Program Standards Singeltary Comment Submission
17 years post mad cow feed ban August 1997
Monday, October 26, 2015
FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEED VIOLATIONS OFFICIAL ACTION INDICATED OIA UPDATE October 2015
Tuesday, December 23, 2014
FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEEDVIOLATIONS OFFICIAL ACTION INDICATED OAI UPDATE DECEMBER 2014 BSE TSE PRION
16 years post mad cow feed ban August 1997 2013
Sunday, December 15, 2013
FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEED VIOLATIONS OFFICIAL ACTION INDICATED OIA UPDATE DECEMBER 2013 UPDATE
Saturday, August 29, 2009
FOIA REQUEST FEED RECALL 2009 Product may have contained prohibited materials Bulk Whole Barley, Recall # V-256-2009
Friday, September 4, 2009
FOIA REQUEST ON FEED RECALL PRODUCT 429,128 lbs. feed for ruminant animals may have been contaminated with prohibited material Recall # V-258-2009
Thursday, March 19, 2009
MILLIONS AND MILLIONS OF POUNDS OF MAD COW FEED IN COMMERCE USA WITH ONGOING 12 YEARS OF DENIAL NOW, WHY IN THE WORLD DO WE TO TALK ABOUT THIS ANYMORE $$$
SATURDAY, OCTOBER 8, 2022
Cattle with the EK211 PRNP polymorphism are susceptible to the H-type bovine spongiform encephalopathy agent from either E211K or wild type donors after oronasal inoculation
MONDAY, AUGUST 29, 2022
Pathobiology, Genetics, and Detection of Transmissible Spongiform Encephalopathies 2021 Annual Report
BRAZIL, BSE, SCRAPIE, CJD, TSE, HISTORY
SATURDAY, SEPTEMBER 4, 2021
Brazil Confirms TWO More Cases of Mad Cow Disease BSE States of Mato Grosso and Minas Gerais
OIE REPORT Brazil BSE 2 CASES CONFIRMED
OIE
Most recent notifications
Country/Territory Disease-Serotype/genotype/subtype Date
Brazil Bovine spongiform encephalopathy 06/09/21
Brazil Bovine spongiform encephalopathy 06/09/21
BRAZIL BSE EEB TSE PRION
CASOS EEB ATÍPICA NO BRASIL
1º CASO: de corte – 13 anos Ø Sertanópolis – Paraná; animal em decúbito – negahvo para raiva; sem alterações no histopatológico Ø 15.06.2012 – diagnóshco posihvo Imunohistoquímica – LANAGRO-PE – Nota Técnica 159/2012; Ø Animal Health and Veterinary Laboratories Agency (AHVLA), Weybridge, United Kingdom – 06.12.2012 - EEB a*pica do 0po H Vaca 2º CASO: corte 12 anos – abate 19.03.14 – vigilância abate emergência – decúbito esternal – fadiga muscular - Notas Técnicas DSA 42 e 52/2014 Ø Porto Esperidião, Mato Grosso; Ø CaracterísHcas – EEB aIpica do Hpo H Ambos no(ficados para OIE.
CASOS EEB ATÍPICA NO BRASIL
3º CASO – 2019 Vaca de corte Nelore – 17 anos Ø Vigilância abate de emergência – animal caído – coleta em 05.04.2019 Ø Nova Canaã do Norte, Mato Grosso Ø Diagnóshco posihvo ELISA – 13.05.2019 - LFDA-PE; Ø Laboratório da Agência de Inspeção de Alimentos Canadenses (CFIA) Alberta, Canada (Laboratório de Referência da OIE) – posihvo ELISA 31.05.2019 Ø CFIA – Canadá – Western Blot – EEB aIpica do Hpo H
OFFICIAL NOTE
Update on an atypical BSE case verified in Mato Grosso Share: Published 06/03/2019 5:41 PM 1- After examining the notification of the occurrence by the International Organization for Animal Health (OIE), this body determined today (3) the closure of the case without changing the Brazilian health status, which remains an insignificant risk for the disease.
2 - The OIE also informed that there will be no supplementary reports on the case.
3 - In the case of China, the Ministry of Agriculture, Livestock and Supply of Brazil has temporarily suspended the issuance of health certificates until the Chinese authority completes its assessment of the information already transmitted about the episode, thus complying with the provisions of the protocol bilateral agreement signed in 2015.
OFFICIAL NOTE
Occurrence of an atypical case of Bovine Spongiform Encephalopathy in Mato Grosso
Published on 05/31/2019 5:20 PM Updated on 05/31/2019 5:25 PM
The Agricultural Defense Secretariat of the Ministry of Agriculture, Livestock and Supply (Mapa) confirms the occurrence, in Mato Grosso, of an atypical case of Bovine Spongiform Encephalopathy ( BSE ). This disease occurs spontaneously and sporadically and is not related to the ingestion of contaminated food.
It is a beef cow, aged 17 years. All BSE- specific risk material was removed from the animal during emergency slaughter and incinerated at the slaughterhouse. Other animal-derived products were identified, located and preventively seized, with no entry of any product into the human or ruminant food chain. Therefore, there is no risk for the population.
It should be noted that the Ministry of Agriculture and the Institute of Agricultural Defense of Mato Grosso (INDEA/MT) immediately began field investigations, with a ban on the original property. All sanitary risk mitigation actions were completed even before the issuance of the final result by a reference laboratory of the World Organization for Animal Health (OIE). After confirmation, this Friday (31), Brazil officially notified the OIE and importing countries, as provided for by international standards.
According to OIE rules, there will be no change in Brazil's risk classification for the disease, which will continue as a country with an insignificant risk, the best possible for BSE . In more than 20 years of surveillance for the disease, Brazil registered only three cases of atypical BSE and no cases of classic BSE .
INTERNATIONAL MARKET
Brazil returns to export beef to China Sales were suspended since June 3 due to notification of an unusual case of BSE in Mato Grosso Share: Published 06/13/2019 11:04 AM Updated on 06/13/2019 1:08 PM China will resume beef imports from Brazil, which had been suspended since June 3, due to the notification of an atypical case of Bovine Spongiform Encephalopathy ( BSE ), detected in Mato Grosso.
China is the only country, among Brazil's importers, that has a sanitary protocol that requires the temporary suspension of meat imports when an atypical case of BSE is detected . The minister of Agriculture, Livestock and Supply, Tereza Cristina, received the news of the reopening of the Chinese market this morning. The minister reaffirmed that she will continue negotiating a new protocol with the Chinese health authorities.
The disease was found in a 17-year-old beef cow. All BSE- specific risk material was removed from the animal during emergency slaughter and incinerated at the slaughterhouse. Other animal-derived products were identified, located and preventively seized, with no entry of any product into the human or ruminant food chain. Therefore, there was no risk for the population.
TUESDAY, SEPTEMBER 27, 2016 Classical Scrapie Diagnosis in ARR/ARR Sheep in Brazil Acta Scientiae Veterinariae, 2015. 43(Suppl 1): 69.
CASE REPORT Pub. 69
ISSN 1679-9216
1
Received: 4 August 2014 Accepted: 19 December 2014 Published: 6 February 2015
1Programa de Pós-graduação em Ciências Veterinárias (PPGCV), Faculdade de Veterinária (FaVet), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil. 2Setor de Patologia Veterinária (SPV), Departamento de Patologia Clínica Veterinária (DPCV), FAVET, UFRGS, Porto Alegre, RS, Brazil. 3Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde (ICBS), UFRGS, Porto Alegre, RS. CORRESPONDENCE: J.S. Leal [julianoob@gmail.com - Tel.: +55 (51) 3308 3631]. Setor de Patologia Veterinária, FAVET, UFRGS. Av. Bento Gonçalves n. 9090, Bairro Agronomia. CEP 91540-000 Porto Alegre, RS, Brazil.
Classical Scrapie Diagnosis in ARR/ARR Sheep in Brazil
Juliano Souza Leal1,2, Caroline Pinto de Andrade2, Gabriel Laizola Frainer Correa2, Gisele Silva Boos2, Matheus Viezzer Bianchi2, Sergio Ceroni da Silva2, Rui Fernando Felix Lopes3 & David Driemeier2
ABSTRACT
Background: Scrapie is a transmissible spongiform encephalopathy (TSE) that affects sheep flocks and goat herds. The transfer of animals or groups of these between sheep farms is associated with increased numbers of infected animals and with the susceptibility or the resistance to natural or classical scrapie form. Although several aspects linked to the etiology of the natural form of this infection remain unclarified, the role of an important genetic control in scrapie incidence has been proposed. Polymorphisms of the PrP gene (prion protein, or simply prion), mainly in codons 136, 154, and 171, have been associated with the risk of scrapie. Case: One animal from a group of 292 sheep was diagnosed positive for scrapie in the municipality of Valparaíso, state of São Paulo, Brazil. The group was part of a flock of 811 free-range, mixed-breed Suffolk sheep of the two genders and ages between 2 and 7 years from different Brazilian regions. Blood was collected for genotyping (for codons 136, 141, 154 and 171), and the third lid and rectal mucosa were sampled for immunohistochemistry (IHC) for scrapie, from all 292 animals of the group. IHC revealed that seven (2.4%) animals were positive for the disease. Collection of samples was repeated for 90 animals, among which the seven individuals diagnosed positive and 83 other animals that had some degree of kinship with those. These 90 sheep were sacrificed and necropsied, when samples of brain (obex), cerebellum, third eyelid, rectal mucosa, mesenteric lymph node, palatine tonsil, and spleen were collected for IHC. The results of IHC analyses carried out after necropsy of the seven positive animals submitted to the second collection of lymphoreticular tissue and of the 83 animals with some degree of kinship with them confirmed the positive diagnosis obtained in the first analysis, and revealed that three other sheep were also positive for scrapie. Samples of 80 animals (89%) were negative for the disease in all organs and tissues analyzed. In turn, 10 sheep (11%) were positive, presenting immunoreactivity in one or more tissues. Genotyping revealed the presence of four of the five alleles of the PrP gene commonly detected in sheep: ARR, ARQ, VRQ and ARH. These allele combinations formed six haplotypes: ARR/ARR, ARR/ARQ, ARH/ARH, ARQ/ARH, ARQ/ARQ and ARQ/VRQ. Animals were classified according to susceptibility to scrapie, when 8.9% of the genotyped sheep were classified into risk group R1 (more resistant, with no restriction to breeding). In turn, 40% of the animals tested ranked in groups R4 and R5 (genetically very susceptible, cannot be used for breeding purposes). Discussion: The susceptibility of sheep flocks depends on the genetic pattern of animals and is determined by the sequence of the gene that codifies protein PrP. Additionally, numerous prion strains are differentiated based on pathological and biochemical characteristics, and may affect animals differently, depending on each individual’s genotype. Most epidemiologic data published to date indicate that animals that carry the ARR/ARR genotype are less susceptible to classical scrapie. However, in the present study, the fact that two scrapie-positive sheep presented the haplotype ARR/ARR indicates that this genotype cannot always be considered an indicator of resistance to the causal agent of the classical manifestation of the disease. The coexistence in the same environment of several crossbred animals from different flocks and farms, which characterizes a new heterogeneous flock, may have promoted a favorable scenario to spread the disease, infecting animals in the most resistant group.
Keywords: biopsy, scrapie, TSEs, immunohistochemistry.
DISCUSSION
The susceptibility of sheep flocks to scrapie depends largely on the genetic pattern of the animal, and is determined mainly by the sequence of the gene that codifies the PrP protein, since there are several polymorphisms that affect the conversion of the cell protein PrPC to its pathological form, PrPSc [8, 9]. Nevertheless, it is not possible to consider the occurrence of only one form of ovine prion, since there are numerous prion strains with different pathological and biochemical characteristics that may affect animals distinctively, depending on their genotypes [1, 30]. In the present study, the frequency of codon VRQ was very low (2.2%), confirming previous findings, which revealed that the alleles ARR and ARQ prevail in Suffolk sheep, and that the allele ARH sometimes is detected [12, 32]. The high sensitivity of homozygous VRQ carriers or of individuals with ARQ haplotypes has also been reported in the literature [24]. This condition raises concerns about susceptibility from the epidemiological perspective, since the allele VRQ, which is rare or absent in breeds like Suffolk, was present in two animals, one of which was positive for scrapie. Most epidemiological and genetic data published indicate that sheep carrying the haplotype ARR/ ARR are less susceptible to classical form, while animals with the haplotype VRQ in homozygosis or with ARQ haplotypes are highly susceptible [24]. This hypothesis is supported by genotyping data for thousands of sheep with the disease around the world. For example, a study carried out in Japan described a classical scrapie case in one ARR/ARR sheep [16]. Sensitivity of ARR/ARR sheep in a scenario of oral exposure to the disease has also been reported [3]. Atypical cases were observed in ARR/ARR animals [11, 42].
Polymorphisms at codon positions 136, 154 and 171 are not the only ones associated with resistance or susceptibility to scrapie [33]. An analysis of the variation of codon positions 136 and 171, for instance, showed that each has several adjacent polymorphic sites and may codify up to four amino acids [7, 50]. The atypical scrapie form, characterized by strain Nor98 [6], is more frequently detected in AHQ animals that carry a polymorphism in codon 141, and has not been described in Suffolk sheep in Brazil [2]. This atypical form expresses phenylalanine (F), instead of leucine (L) in the form L141F [6, 37, 46].
However, although it is generally acceptable that classical scrapie is an infectious and contagious disease [14], contagion with the atypical form is questionable in light of the fact that the specific marker for the atypical manifestation of the disease is detected outside the central nervous system [5, 20, 29], even in cases experimentally transmitted to transgenic mice [35] and sheep [47]. Several studies have demonstrated that susceptibility to the atypical form is consistently associated with PrP codons 141 (L/F) and 154 (R/H) [6, 42]. In fact, studies have proposed the hypothesis that this form may evolve when the animal is not exposed to the infectious agent [5, 18, 29, 48], given the limited knowledge of the physiopathology of this manifestation of the disease [19].
In the present study, two (2/8) positive animals presented the haplotype ARR/ARR, which is considered to be the least susceptible and therefore responsible for the lowest risk of scrapie. However, like all sheep that were genotyped, these animals did not present any change in lysine in codon position 141. This change (that is, when lysine is replaced by phenylalanine) has been associated with atypical scrapie in Suffolk sheep [6]. Therefore, these two ARR/ARR sheep do not fit in the genotypic characteristics of sheep that may commonly present the atypical form. It is possible that the presence of several crossbred animals of different flocks and farms in the same environment, which characterizes an heterogeneous flock, has created the favorable conditions for the disease to evolve and spread, infecting the more susceptible animals.
The variation in the frequency of the PrP genotype between flocks has been identified as a real risk factor for the disease [4]. The introduction of adult sheep free of scrapie in contaminated flocks is believed to allow lateral transmission, even between adult animals with less susceptible genotypes [40, 45], although young sheep are more predisposed [43]. Other reasons behind differences in occurrence include the stress caused during husbandry and large population numbers [26]. Additionally, the lack of a defined epidemiological pattern and the different strains of the causal agent play an important role in inter-flock variability [40]. Several models were based on the assumption that outbreak duration is influenced by flock size and by the frequency of the PrP genotype in one flock [25, 26, 38, 51]. Commercial flocks with high genetic diversity, mainly in codons other than 136, 154 and 171, are more consistently affected. In these animals, the onset of clinical manifestations occurs at significantly different ages, with means varying from 2 to 5.7 years, due to noteworthy dissimilarities in age and PrP genotype profiles [40]. The purchase of infected animals has been pointed out as the main scrapie infection mechanism in flocks [27, 41].
*** The diagnosis of scrapie in two homozygous ARR/ARR sheep indicates that the resistance of this genotype to the classical form of the disease is debatable. Although scrapie in these animals is rare, the cases presented in this case report lend strength to the notion that its occurrence depends on a combination of infectious factors, including differences in biological and biochemical properties in the natural hosts to this prion.
MANUFACTURERS 1VMRD Pullman Albion Road. Pullman, WA, USA. 2Qiagen. Hilden, Germany. 3InvitrogenTM. São Paulo, Brazil. 4Life TechnologiesTM. Gaithersburg, MD, USA. 5InvitrogenTM. Carlsbad, CA, USA. 6Applied Biosystems Inc. Foster City, CA, USA. Declaration of interest. The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.
Scrapie diagnosis in a goat and four Santa Inês sheep from the same herd in Brazil
J.S. LealG.L.F. CorreaG.S. BoosM.V. BianchiF.M. BoabaidR.F.F. LopesD. Driemeier
Diagnóstico de scrapie em um caprino e quatro ovinos Santa Inês de um mesmo rebanho no Brasil
Scrapie is a fatal and progressive transmissible spongiform encephalopathy (TSE) of natural occurrence in sheep and goats. The suspicion of scrapie may be based on clinical signs; however, the detection of pathological features of the prionic protein (PrP) in target tissues is necessary to diagnose the disease. The presence of an abnormal protein form (PrPSc) in lymphoreticular and nervous tissues is an important characteristic in diagnosis. This paper reports a case of scrapie in a flock of 55 Suffolk crossbred sheep, 19 Santa Inês sheep and 21 goats in the Mato Grosso state, midwestern Brazil. The animals were euthanized after the confirmation of a scrapie case with clinical signs in a Suffolk sheep in the same farm. Samples of brainstem at the level of the obex and lymphoid issues like palatine tonsils, mesenteric lymph nodes, third eyelid fixed in formalin 10% were processed for histological examination. Histological examination with hematoxylin and eosin did not show any microscopic changes in samples. Immunohistochemistry (IHC) examination to detect anti-prion PrPSc was performed in lymphoid tissues. Scrapie diagnosis was confirmed based on IHC positive results for PrPSc in lymphoid tissues of a crossbreed goat and four Santa Inês sheep, without any clinical scrapie signs. IHC showed positive staining in at least three lymphoid germinal centers in goat mesenteric lymph node, palatine tonsil, and third eyelid samples. The mesenteric lymph node, and tonsil samples of all sheep showed positive immunostaining, and only one sheep showed positive staining in lymphoid follicles in the third eyelid. Scrapie diagnosis using IHC in fixed samples of lymphoreticular tissue is technically feasible to detect the disease in both goats and sheep, as a form of pre-clinical diagnosis. The results indicate that the herd was infected by a sheep coming from another herd where scrapie had been diagnosed before.
scrapie; prion; diseases of small ruminants; immunohistochemistry; lymphoid tissues
WEDNESDAY, JUNE 12, 2019
FINAL REPORT OF AN AUDIT CONDUCTED IN BRAZIL MAY 15 TO JUNE 2, 2017 EVALUATING THE FOOD SAFETY SYSTEMS GOVERNING MEAT PRODUCTS EXPORTED TO THE UNITED STATES OF AMERICA
TUESDAY, MARCH 26, 2019
Joint Statement from President Donald J. Trump USA and President Jair Bolsonaro Brazil FOREIGN POLICY BSE TSE Prion aka mad cow disease
SATURDAY, JUNE 01, 2019
Brazil reports another cases of mad cow disease atypical BSE TSE Prion
FINAL REPORT OF AN AUDIT CONDUCTED IN BRAZIL MAY 15 TO JUNE 2, 2017 EVALUATING THE FOOD SAFETY SYSTEMS GOVERNING MEAT PRODUCTS EXPORTED TO THE UNITED STATES OF AMERICA
FINAL REPORT OF AN AUDIT CONDUCTED IN BRAZIL
MAY 15 TO JUNE 2, 2017
EVALUATING THE FOOD SAFETY SYSTEMS GOVERNING MEAT PRODUCTS EXPORTED TO THE UNITED STATES OF AMERICA
FINAL REPORT OF AN AUDIT CONDUCTED IN BRAZIL
MAY 15 TO JUNE 2, 2017
EVALUATING THE FOOD SAFETY SYSTEMS GOVERNING MEAT PRODUCTS
EXPORTED TO THE UNITED STATES OF AMERICA
November 6, 2017
Food Safety and Inspection Service
United States Department of Agriculture
Executive Summary
This report describes the outcome of an onsite equivalence verification audit conducted by the Food Safety and Inspection Service (FSIS) from May 15 to June 2, 2017. The purpose of the audit was to determine whether Brazil's meat inspection system remains equivalent to that of the United States, with the ability to export products that are safe, wholesome, unadulterated, and correctly labeled and packaged. At the time of this audit, Brazil was approved to export raw intact, ready-to-eat (RTE), not ready-to-eat (NRTE) processed, and thermally processed, commercially sterile (TPCS) meat.
The audit focused on six system equivalence components: (1) Government Oversight (e.g., Organization and Administration); (2) Government Statutory Authority, Food Safety, and Other Consumer Protection Regulations (e.g., Inspection System Operation, Product Standards and Labeling, and Humane Handling); (3) Government Sanitation; (4) Government Hazard Analysis and Critical Control Points (HACCP) System; (5) Government Chemical Residue Testing Programs; and (6) Government Microbiological Testing Programs. The FSIS auditors identified the following systemic findings:
Government Oversight
The Central Competent Authority (CCA) has not developed policies and procedures to identify potential areas where conflicts of interest could arise between inspection personnel and the regulated establishments where they work;
The CCA does not verify that regulatory information provided to supervisory official veterinarians is consistently communicated to their subordinates;
The CCA does not verify that in-plant inspectors perform their assigned duties in a manner that is consistent with the issued instructions; and
The CCA has not developed procedures to standardize the assessment of competence and performance of in-plant inspection personnel assigned to United States-certified establishments. Government Statutory Authority and Food Safety and Other Consumer Protection Regulations
The implemented post-mortem inspection procedures are inadequate to ensure that only wholesome carcasses, free of contamination and defects receive the mark of inspection;
Brazilian TPCS product reinspected at United States point-of-entry demonstrates a trend of abnormal container violations; and
Higher-level officials did not adequately review and follow-up on periodic supervisory reports and plans of action.
Government Sanitation
Inspection personnel do not adequately enforce sanitation regulatory requirements to prevent the creation of insanitary conditions and direct product contamination.
Government HACCP System
Inspection personnel do not accurately assess the design and implementation of the establishments HACCP systems, and do not conduct adequate verification sampling of products. Government Chemical Residue Testing
The official methods of chemical analysis used by the government laboratories is inconsistent with FSIS requirements; and
The CCA has not instructed establishments and in-plant inspectors to hold livestock carcasses selected for residue sampling until acceptable results are received.
During the audit exit meeting, the CCA committed to address the preliminary findings as presented. FSIS received a written response from the CCA addressing all outstanding concerns identified in the draft final audit report. FSIS will evaluate the adequacy of the proposed corrective actions and base its activities for future equivalence verification on the information provided.
snip...see full text;
Post forecasts beef production in 2019 at 10.2 million metric tons, which is an increase of 3 percent. The increase is driven by solid exports, mostly to China and Hong Kong and moderate domestic demand. Posts also forecasts pork production to increase by over 3 percent and reach nearly 3.8 million metric tons, reflecting a rebound in exports, moderate domestic demand and favorable feed costs in 2019. The expected growth of the Brazilian economy in 2019, with declining inflation and unemployment rates support optimism in the animal protein sector in Brazil. Major uncertainties in the near future include the volatility of the exchange rate, end of the year elections and a new federal administration in 2019.
USDA Halts Beef Imports from Brazil Drovers
June 22, 2017 04:59 PM
Imports of fresh beef from Brazil are being halted into the U.S. The announcement was made by Secretary of Agriculture Sonny Perdue after inspections by USDA-Food Safety and Inspection Service (FSIS) revealed concerns over safety issues.
"Ensuring the safety of our nation’s food supply is one of our critical missions, and it’s one we undertake with great seriousness," Perdue says.
Brazil’s Ministry of Agriculture self-suspended the shipment of beef from five packing plants after U.S. officials found "irregularities" in the processed carcasses this past week. However, the move by Perdue and USDA will supersede the self-suspension.
A statement from the Brazilian Association of Beef Industry Exports says the self-suspension happened "after the detection of [bovine] reactions to the vaccine for foot-and-mouth disease, that in some cases can provoke internal, and not externally visible abscesses."
The voluntary halt by Brazil appeared to be temporary while the vaccine manufacture attempted to find a solution for the abscesses. Now it could be much longer before fresh Brazilian beef enters the U.S.
"Once again the industry is inheriting a problem that it has not created," says Antonio Camardelli, president of the board of the Brazilian Association of Meat Exporters.
The Ministry of Agriculture was alerted by USDA-FSIS on June 16 and exports were stopped immediately from those plants impacted. State locations and ownership of the packing facilities include:
Owner JBS Location Mato Grosso do Sul
Owner Minerva Location Goias
Owner Marfrig Locations Sao Paulo Mato Grosso Rio Grande do Sul The U.S. just began exporting fresh beef from Brazil last year after a trade agreement was reached on Aug. 1. Prior to this trade deal, Brazil had not had access into the U.S. since 2003 because of foot-and-mouth disease outbreaks. Similarly, U.S. beef had not been in Brazil since 2003 when bovine spongiform encephalopathy was found.
"Although international trade is an important part of what we do at USDA, and Brazil has long been one of our partners, my first priority is to protect American consumers," Perdue says. "That’s what we’ve done by halting the import of Brazilian fresh beef. I commend the work of USDA’s Food Safety and Inspection Service for painstakingly safeguarding the food we serve our families."
There were 31 packing plants in Brazil approved to export into the U.S. prior to this suspension.
Brazil’s meat packing industry has seen a number of setbacks in the past few months after the discovery of a widespread bribery scandal. Aftershocks from the corruption scandal have included:
The stoppage of exports into a number of countries JBS owners stepping down from the board The selloff of several other JBS packing plants in South America More selloffs of different JBS businesses like Five Rivers Cattle Feeding in the U.S. In March, USDA FSIS began inspecting all meat product coming from Brazil. During that time FSIS has rejected 11% of Brazilian fresh beef imports. It adds up to 1.9 million pounds of beef from 106 lots that were rejected because of public health concerns, sanitary conditions and animal health issues.
National Cattlemen’s Beef Association (NCBA) is in support of the decision to suspend fresh beef imports from Brazil.
"This action is the result of USDA’s strong, science-based testing protocol of imported beef and this proves that our food safety system works effectively. NCBA supports USDA’s commitment to science-based trade and its commitment to keeping our food supply as safe as possible," says Craig Uden, NCBA president.
There is no timeline for when Brazil will be eligible to again export beef to the U.S. market.
Minvera to export beef to US
09.15.2016
By Erica Shaffer SAO PAULO, Brazil – Two meat processing facilities owned by Minerva SA have been cleared to export fresh beef to the United States.
The company’s facilities in Palmeiras de Goias and Barretos have processing capacities of 2,000 head of cattle per day and 840 head of cattle per day, respectively. In a notice to shareholders, the company explained that, “The US import system is based on specific quotas depending on the country or group of countries, and Brazil has not yet been assigned a quota. Therefore, the country will initially be included under the ‘Other’ quota (with a total equivalent to 64,800 ton/year), where countries such as Chile, Costa Rica, El Salvador, Honduras, Nicaragua and the Dominican Republic, together, are also able to export to USA.”
In August, USDA announced that Brazil had reopened its markets to US beef exports. Brazil had banned imports of US beef and beef products in 2003 after the discovery of a confirmed case of bovine spongiform encephalopathy (BSE). Brazil had its own brush with atypical BSE in 2012. Animals classified as having atypical BSE may or may not get BSE.
Minerva operates 17 slaughtering and boning plants — 11 in Brazil, three in Paraguay, two in Uruguay and one in Colombia. Slaughtering capacity is 17,330 head of cattle per day, and boning capacity is 20,300 head per day, according to the company’s website. Minerva also operates 13 distribution centers.
TUESDAY, SEPTEMBER 27, 2016
Classical Scrapie Diagnosis in ARR/ARR Sheep in Brazil
Acta Scientiae Veterinariae, 2015. 43(Suppl 1): 69.
MONDAY, AUGUST 1, 2016
USDA Announces Reopening of Brazilian Market to U.S. Beef Exports and the Potential for Transmissible Spongiform Encephalopathy TSE prion disease
MONDAY, MAY 5, 2014
Brazil BSE Mad Cow disease confirmed OIE 02/05/2014
Monday, May 5, 2014
Brazil 2nd BSE Mad Cow disease confirmed OIE 02/05/2014
Thursday, April 24, 2014
Brazil investigates possible BSE mad cow case
WEDNESDAY, JANUARY 29, 2014
Another Suspect case of Creutzfeldt-Jakob disease investigated in Brazil
THURSDAY, SEPTEMBER 26, 2013
Brazil evaluate the implementation of health rules on animal by-products and derived products SRM BSE TSE PRION aka MAD COW DISEASE
Wednesday, December 19, 2012
Scientific Report of the European Food Safety Authority on the Assessment of the Geographical BSE Risk (GBR) of Brazil
***> Friday, December 07, 2012
***> ATYPICAL BSE BRAZIL 2010 FINALLY CONFIRMED OIE 2012
FRIDAY, FEBRUARY 03, 2023
OIE Netherlands Bovine Spongiform Encephalopathy BSE, atypical strain, L-type
Friday, February 10, 2023
OIE WAHIS SPAIN BOVINE SPONGIFORM ENCEPHALOPATHY BSE Atypical H-Type
WEDNESDAY, FEBRUARY 8, 2023
NATIONAL PRION DISEASE PATHOLOGY SURVEILLANCE CENTER SURVEILLANCE TABLES OF CASES EXAMINED January 11th, 2023
Aug. 5, 2001
Mad cow disease: Could it be here?
Man's stubborn crusade attracts experts' notice
Photo of Carol Christian
Carol Christian, Chron.com / Houston Chronicle
Aug. 5, 2001
Like Paul Revere with e-mail, Terry Singeltary Sr. is on a mission to sound an alarm: Beware of mad cow disease.
As is true of many crusaders, however, his pleas often fall on deaf ears. Health officials here and abroad insist that bovine spongiform encephalopathy -- popularly known as mad cow disease, a fatal brain disorder that can make cows shake uncontrollably -- has been kept out of this country through surveillance of the cattle industry.
But since his mother's death in December 1997, the Galveston County man has been obsessed with possible connections between her deadly brain disorder, sporadic Creutzfeldt-Jakob Disease, and mad cow disease.
And after much persistence on his part, people are taking notice of this former machinist and high school dropout who jokes that he has a Ph.D. -- a Pool Hall Degree.
"They called me Chicken Little for four years," he said. "Now they're calling back, asking for more information."
For the past year he has been U.S. co-coordinator of an international monitoring group called CJD Watch. He regularly gets e-mail from scientists and journalists around the world.
Debora MacKenzie, a reporter for the British magazine New Scientist, described Singeltary, 47, as a "dogged unearther and tabulator of government documents."
Singeltary monitors "every word written about CJD/BSE," said Anita Manning of USA Today, also by e-mail.
"He's passionate, opinionated and not always tactful, although I like him because he's such a character and he is so transparent," Manning said. "He is what he appears to be."
Science and environment writer Jonathan Leake of the Sunday Times in London said Singeltary has helped him track down families of people with CJD along with academic research papers.
"I strongly suspect he is right in thinking the USA has had BSE cases," Leake said by e-mail.
"The American government is making the same mistake as the British in putting the short-term commercial interests of its farmers before health considerations," he added.
"It should start formal and widespread testing of cattle plus compulsory autopsies for all human CJD victims at the state's expense. If there is BSE, then leaving it to spread will kill people -- and that would eventually destroy the industry, too."
Texas Department of Health epidemiologist Julie Rawlings said Singeltary's careful monitoring of the disease had proven useful.
"Terry has been helpful in providing contact information regarding suspect CJD cases so that the Health Department can initiate case investigations and learn more about CJD in Texas," she said.
Noting that the department cannot release records on individual patients, she added, "I think we learn more from him than he does from us."
Mad cow disease surfaced in England in 1986 and quickly became an epidemic. It since has been reported in 15 European countries, most recently Greece on July 2, and the Czech Republic on June 14. Two German-born cows tested positive for BSE in November.
Singeltary said he became convinced that BSE is here as he watched his mother, Barbara Poulter of Crystal Beach, dying of sporadic Creutzfeldt-Jakob Disease. The rare, fatal brain disease is sometimes accompanied by severe jerking.
"She would jerk so bad at times, it would take three of us to hold her down," Singeltary said. "They can call it whatever they want, but I know what I saw, and what she went through. `Sporadic' simply means they don't know."
Poulter, a retired telephone-company field worker, had a form of sporadic CJD -- Haidenhain variant -- that is even less common than the typical sporadic case. One of its first symptoms is loss of vision.
She started seeing brown spots in September 1997 and was virtually blind within two weeks. By the eighth week of the illness Poulter was bedridden, and in the 10th week she died. Before that she had been in good health.
In many countries and most U.S. states, physicians are not required to report CJD cases to health officials. Texas made the disease reportable in 1998. Through 2000, there were 17 probable or confirmed cases, according to the Texas Department of Health.
In mid-June, a case of sporadic CJD was confirmed through brain biopsy at Christus Spohn Hospital Shoreline in Corpus Christi, said Jane Bakos, hospital vice president. The patient has since died, the hospital reported.
CJD and mad cow disease leave their victims' brains full of holes like a sponge. Although not contagious, the illnesses are thought to be transmissible through prions, or nearly indestructible abnormal proteins.
Because the prion protein is not killed by standard sterilization, sporadic CJD can be spread by contaminated surgical instruments.
In March 1996, the British government announced the discovery of a new variant of CJD, most likely explained by exposure to bovine spongiform encephalopathy.
Through June, 101 cases of new-variant CJD have been reported in the United Kingdom, three in France and one in Ireland. In contrast to sporadic CJD, the new variant usually affects younger patients and lasts longer.
No cases of new-variant CJD or BSE have been reported in the United States. No relationship has been shown between sporadic CJD and mad cow disease.
There is no indication that new-variant CJD can be spread through blood transfusions, but a U.S. Food and Drug Administration advisory committee voted in June to broaden the categories for excluding potential donors. The recommendations have not yet been approved by the FDA.
The American Red Cross has announced that on Sept. 17 it will begin rejecting potential blood donors who, since 1980, have spent at least three months in the United Kingdom or at least six months in any European country or combination of countries. Those who have received a blood transfusion in Britain since 1980 also will be rejected.
The primary collector of local blood donations is the Gulf Coast Regional Blood Center, which will follow the FDA's guidelines, said Bill Teague, president and chief executive officer.
Singeltary said it's naive to think that U.S. prevention efforts have kept mad cow and new-variant CJD out of the United States.
"They haven't found it," he said, "because they haven't looked."
For one thing, he said, too few cows are tested for the disease. In the first six months of this year, the European Union tested more than 3.2 million cows, David Byrne of the European Commission said in a speech last month.
By contrast, it took the U.S. Department of Agriculture nearly 10 years to analyze about 13,000 cow brains, according to the department's Web site.
With more than 68 million cattle slaughtered since 1990 in the United States, according to the USDA, checking about 13,000 falls far short, Singeltary said.
Though not a scholar, Singeltary has collected voluminous material on mad cow and CJD. Disabled from a neck injury, Singeltary never used a computer until 1998. He now spends hours each day on the Internet while his wife, Bonnie Singeltary, runs a flower shop in their home in Bacliff, in north Galveston County.
His challenge to the CJD/BSE establishment is courageous and refreshing, said Dr. Lynette Dumble, former visiting professor of surgery at University of Texas Medical School at Houston and a former senior research fellow in the history and philosophy of science at the University of Melbourne in Australia.
"I certainly have no problem with Terry's ideas on BSE/CJD," said Dumble, who coordinates the Global Sisterhood Network, a computer service that posts media reports on developments affecting women. "His research skills are excellent, and he is abreast of each and every development in the field."
Among Singeltary's worries now, he said, are widespread violations of an August 1997 ban on feeding animal products to U.S. cattle. The FDA reported in January that hundreds of feed manufacturers were not complying with regulations designed to keep BSE out of this country.
(That same month, a Purina Mills feedlot near San Antonio told the FDA that a "very low level" of cow parts had been found in cattle feed. The company voluntarily removed 1,222 animals who had been fed the prohibited materials.)
He obtained copies of FDA letters to various feed mills that had been found in violation of the regulations and immediately sent them by e-mail to hundreds of people around the world.
Singeltary might not be so zealous in getting the word out if he weren't convinced that someone is covering up the truth.
"They used to say BSE would never transmit to humans," he said, "and it has. They lied about the feed ban being in place.
"I've lost faith in the whole process. I've discovered too many things."
Photo of Carol Christian
Written By Carol Christian
Terry S. Singeltary Sr., Bacliff, Texas, USA, 77518 flounder9@verizon.net