The Mad Cow That Stole Christmas, 20 Years Later
The Mad Cow That Stole Christmas, 20 Years Later, What Has Changed, Nothing
THE USA has systematically covered up mad cow disease, in my honest opinion, the USA mad cow disease today, is Chronic Wasting Disease CWD TSE Prion disease in Cervid, they can't cover that up.
before going any further, while reading this, remember one thing, the mad cow feed ban has failed terribly, along with surveillance efforts to detect BSE. only testing <25K cattle in the USA every year, you will not find BSE, this was said long ago, you must test at least 40K, and yet that, will not find much.
1st, let's review the old history of this first case of mad cow disease in the USA, that mad cow that stole Christmas in 2003, shall we...
Tue, 23 Dec 2003 16:37:42 -0600
Subject: MADCOW CONFIRMED USA WASHINGTON STATE
From: "Terry S. Singeltary Sr." <flounder@WT.NET>
Reply To: Bovine Spongiform Encephalopathy <BSE-L@UNI-KARLSRUHE.DE>
Date: Tue, 23 Dec 2003 16:37:42 -0600
Content-Type: text/plain Parts/Attachments: text/plain (15 lines)
######## Bovine Spongiform Encephalopathy <BSE-L@UNI-KARLSRUHE.DE> #########
CNBC JUST ANNOUNCED 1ST USA MAD COW CASE !!!
Agriculture Secretary Ann M. Veneman To Hold News Conference
Agriculture Secretary Ann M. Veneman will conduct a news conference from
USDA this afternoon at 5:30 p.m. EST.
http://www.usda.gov/index.html
TSS
########### http://mailhost.rz.uni-karlsruhe.de/warc/bse-l.html ############
Subject: Transcript of News Conference with Agriculture Secretary Ann M. Veneman on BSE
From: "Terry S. Singeltary Sr." <flounder@WT.NET>
Reply To: Bovine Spongiform Encephalopathy <BSE-L@UNI-KARLSRUHE.DE>
Date: Tue, 23 Dec 2003 22:54:19 -0600
Content-Type: text/plain Parts/Attachments: text/plain (381 lines)
######## Bovine Spongiform Encephalopathy <BSE-L@UNI-KARLSRUHE.DE> #########
Transcript of News Conference with Agriculture Secretary Ann M. Veneman on BSE
Tuesday, December 23, 2003 Washington D.C.
See attachment for full story
USDA News oc.news@usda.gov 202 720-9035
Release no. 0433.03 of News Conference with Agriculture Secretary Ann M. Veneman on BSE
Tuesday, December 23, 2003 Washington D.C.
SECRETARY VENEMAN: We are here this afternoon on such very short notice. Joining me today are Bill Hawks, USDA's Under Secretary for Marketing and Regulatory programs; Dr. Elsa Murano, our Under Secretary for Food Safety; and Dr. Ron DeHaven, our Deputy Administrator for Veterinary Services at the Animal Plant Health Inspection Service and our chief veterinarian here at USDA.
They will assist me in answering any questions that you have.
Today we received word from USDA's National Veterinary Services Laboratories in Iowa that a single Holstein cow from Washington State has tested as presumptive positive for BSE or what is widely known as mad cow disease.
Despite this finding we remain confident in the safety of our food supply. The risk to human health from BSE is extremely low. The animal tested was a downer cow or nonambulatory at the time of slaughter and was identified as part of USDA's targeted surveillance program.
The sample was taken on December 9th. It was tested and retested at our Ames facility using two tests including immuno-histo-chemistry, which is recognized as the gold standard for the detection of BSE by the World Health Organization and OIE, the Organization of International Epizootics.
A sample from this animal is being flown on a military aircraft to the central veterinary laboratory in Weybridge, England in order to confirm this finding. Our traceback indicates that the animal comes from a farm in Mabton, Washington, about 40 miles southeast of Yakima, Washington.
As part of our response plan that farm has been quarantined. After the animal was slaughtered meat was sent for processing to Midway Meats in Washington State. USDA's Food Safety Inspection Service is working quickly to accurately determine the final disposition of the products from the animal.
Even though the risks to human health is minimal based on current evidence, we will take all appropriate actions out of an abundance of caution.
-more- Since 1990 the U.S. Department of Agriculture has had an aggressive surveillance program in place to ensure detection and a swift response in the event of the introduction of BSE in this country. As part of that program we developed a response plan to be used if BSE is identified in the United States.
While this is a presumptive finding, we have activated that response plan today. We are making the appropriate notifications and confirmations under the plan and start-up activities are beginning.
I have been in contact with Secretary Ridge and I would emphasize that based on the information available this incident is not terrorist related nor is it related in any way to our nation's heightened alert status. I cannot stress this point strongly enough.
The safety of our food supply and public health are high priorities of this Administration and high priorities of USDA. In the last year we have tested 20,526 head of cattle for BSE, which is triple the level of the previous year of 2002. The presumptive positive today is a result of our aggressive surveillance program. This is a clear indication that our surveillance and detection program is working.
USDA has been training and planning for several years in case this situation presented itself. We continue to protect the U.S. food supply and the public health and safeguard American agriculture.
In October we announced findings from the Harvard Center for Risk Analysis that found that even if an infected animal were introduced into the U.S. animal agriculture system, the risk of spreading is low based on the safeguards and controls we have already put in place.
As part of our response to this situation we will provide daily briefings to update the public on the status. We will continue to provide you all of the information that we possibly can and do so as quickly as possible.
We have released this finding even before final confirmation in the U.K. because of our confidence in the testing that has already been carried out, and in the interest of protecting the food supply and public health. Information is available on our web site at www.usda.gov, and we will be updating that information frequently.
We will also have regularly recorded updates for you, and you may call a toll-free number, 1-866-4USDA-COM.
While this incident would represent the first finding of BSE in the United States, we have worked hard to ensure that our response is swift and effective. We will continue to work with partners such as the Food and Drug Administration and the Department of Homeland Security to protect our food supply and the public health.
At this time of year many Americans are making plans for the holidays and for food. We see no need for people to alter those plans or their eating habits or to do anything but have a happy and healthy holiday season. I plan to serve beef for my Christmas dinner. And we remain confident in the safety of our food supply.
I want to thank you all again for being here on this late hour and on such short notice. But we did feel it was important to update you on this important situation. Thank you. And we will be glad to take your questions. -more- PARTICIPANT: Danielson, Bloomberg News. Is there any connection with this finding to the incident in Alberta, Canada? That perhaps that cow came down from Canada in any way?
SECRETARY VENEMAN: It is way too early to tell, but I would think that the situation of trying to put those two incidences together would be doubtful, primarily because they're different kinds of animals. This was a Holstein cow.
MR. FAUVY: Randy Fabi with Reuters. Have you alerted any of your trading partners to this incidence, and, if so, have they--have any countries taken action against, close their borders to U.S. beef exports?
SECRETARY VENEMAN: Again, it's very early, Randy. We have--we are in the process of notifying a whole range of people at this point, including our trading partners, and I can't at this point anticipate what they may do in response to this announcement.
MR. SALANTE: Jonathan Salante with the Associated Press. What steps, if any, are you specifically taking to prevent the spread of this disease, and what assurances do we have that the beef is--that the other beef is not contaminated?
SECRETARY VENEMAN: Well, I think it's very important to recognize that this disease does not spread easily. One of the things that people are very confused about, and I found it as we went through situation when Canada had a single case of BSE is a lot of times people don't understand that this is not foot and mouth disease; it's not that highly contagious disease that you often see spread so quickly as you did in the U.K. at the beginning of 2001. So it's important to make that distinction.
We have been taking steps since 1990 to protect our beef supplies from this disease. We implemented a feed ban; we have required the removal of any kind of risk materials from an animal like this one, a downer animal, and we have a whole series of actions that have been taken to reduce, substantially, the risk to public health from this disease if it ever were found. And that's why we continue to believe that this finding, while unfortunate, does not pose any kind of significant risk to the human food chain.
MS. NAGEL: Sara Nagel, Fox News. Can you tell us who this will affect, what the chances that it could become more widespread here in the U.S. are?
SECRETARY VENEMAN: Well, I think at this point it's hard to tell, but again, the unfortunate find of a single case in Canada earlier this year gave us some experience of the type of investigation that we now have to do. We did not know when the Canada investigation started, whether or not there would be more cases or whether or not it would be an isolated case. Indeed, after several months of checking into the situation, it turned out to be an isolated case.
It is too early at this point to say whether or not this will be an isolated case. What I can tell you that we're doing is we're going back to the farm where this cow came from. We will be doing a complete investigation on farm and tracing the animal back to its origin.
MR. RIVALL: Sorry, Audy Rivall, ABC News. Tell us a little bit more about this particular farm. What do you plan to do about the other animals? Are you saying that it was quarantined, and you're--and it's going to test the other--the cows there?
-more-
And also, how concerned are you that the public outcry of people here on the street hear "mad cow" there could be some sort of hysteria associated with that? How concerned are you about that? And, certainly, you must agree that it's a possibility, are you not?
SECRETARY VENEMAN: Well, I would certainly hope that people will remain confident in the food supply. As I said, we in some ways had some experience with this because of the one find in Canada. What we found because of the actions that were taken both in Canada and in the United States with the case earlier this year is that demand for beef did not diminish partly because we believe the people in North America know that we have the strongest food safety systems in the world. We have the protections in place, and again, I, personally, do not hesitate to recommend to anyone that beef is absolutely safe to eat.
As to the farm, your other question, again we're in the very early stages of the investigation. We have a complete book of protocols that we're following with regard to how we would deal if we ever had an outbreak of BSE. We're following all those steps, including we've already located the farm, and that farm will be quarantined and an investigation will begin. Again, this was very recent breaking news so we're taking all steps that we can, and we will be continuing to update you, as we indicated.
MR. DUNN: I'm (inaudible) Dunn from the Washington Post. Could you give us some sense of narrative about the farm? Why was this particular farm being studied? Was this animal significant in some way that you did tests on this animal? How many other animals were there on this farm? How many other farms are approximate to this farm?
SECRETARY VENEMAN: Okay, first of all, the test was not done on the farm. The test was done when the animal was presented at the slaughter facility, and it is our standard operating procedure that what they call downer animals will be tested if they--if they come to the slaughter facility as a downer animal.
The farm has been identified since we got the test results back from the animal. We've then gone to the plant just this afternoon, found where the animal came from, and that's where the investigation will begin in terms of looking at whether or not there is any other impact on cows on that farm. But at this point the information with regard to the farm and the surrounding areas is still pretty preliminary. I don't have that information at this point.
MR. FABI: Randy Fabi with Reuters. I'm just--what is the likelihood that any of this cow made it into the food supply? I know that you have contacted the meat suppliers. Is there a recall underway?
SECRETARY VENEMAN: That's--that, Randy, is what we're trying to identify at this point. We do believe that the product from the animal went to two further processing plants. This plant was a very small plant. It just slaughters a few animals, and our current understanding, and again it's very preliminary, is that that product did go to further processing plants. But again, one thing that is important to remember is that muscle cuts of meats have almost no risk. In fact, as far as the science is concerned, I know of no science to show that you can transmit BSE from muscle cuts of meat. So the fact that it's gone to further processing is not significant in terms of human health. But we are doing the trace backs. We are looking at trace forwards, where did the product go. And we will take appropriate actions as we make the determinations as to where the product is and what has happened to it.
-more-
I think we -- I mentioned one of them, but there is actually two.
DR. MURANO: Let me first reiterate what the Secretary just said. You should know that the tissues that are the infectious tissues from an animal that has BSE, that is the central nervous system tissues, the brains, spinal cord and so forth, of this animal did not enter the food supply. Those tissues to rendering. So they did not enter the food supply. That's very important to know.
Now, the muscles cuts, as the Secretary said, went from the slaughter facility to another facility that did the deboning and that facility is Midway Meats, as the Secretary mentioned. Then from there we believe that it went to two other facilities. One is called Willamette and the second one is called Interstate Meat, both in Washington State.
Again, the muscle cuts are where there is virtually no risk of BSE. The material, the brain, spinal cord, distal ileum, which is where the BSE agent resides, those materials did not enter the food supply.
PARTICIPANT: (inaudible) with CNN. You said the health risks are minimal but what if someone did eat meat contaminated with this. What are the health risks?
SECRETARY VENEMAN: Well, again as Dr. Murano just indicated, there is virtually no chance that the meat has been contaminated and the agents, that would be the high risk agents in any animal have been removed from this particular animal so we really dont believe that there iswe believe that the risk of any kind of human health effect is extremely low.
PARTICIPANT: Yes, but what if you find another animal on the farm that is contaminated.
DR. MURANO: Well, you should know that the agent that causes mad cow disease as I said earlier resides mainly in those tissues that I mentioned, the brain, spinal cord, distal ileum, which were removed from this animal and sent to rendering so they were not in the food supply. The scientific community believes that there is no evidence to demonstrate that muscle cuts or whole muscle meats that come from animals that are infected with mad cow disease agent themselvesthe meat itself is effective to human beings. There is no evidence to show that and that is as far as we can state that. Its a good thing obviously that the infectious materials from this animal were removed and sent to rendering which is something that we do as standard practice on these downer animals that are tested by APHIS.
PARTICIPANT: Christopher (inaudible) with Reuters. I was wondering if you could tell us a little bit more about what is going to be happening in the U.K. specifically and what your timetable is for getting final results on those tests?
SECRETARY VENEMAN: Well, as I indicated, the sample is being flown to a laboratory in the U.K. which is one of the world's best laboratories for analyzing BSE. And that will take a number of days, probably -- probably three to five days to get final results on that sample.
So, again, we are getting it there as quickly as we possibly can. But the results that we have been able to confirm in our own laboratories have been something that we felt that we ought to take action on.
PARTICIPANT: You have said that you have quarantined the farm itself. Have you imposed any kind of quarantine on the slaughterhouse at the three facilities that are downstream?
-more- SECRETARY VENEMAN: Well, we have people that have gone into the slaughterhouse as well as are going into the downstream facilities, starting to review records. But we will be doing a complete review and investigation of the entire food chain where this animal might have been transferred during the process.
Well, I don't think you would normally impose quarantine on a plant. You impose quarantine on a farm. But we will be doing an investigation of the plants to determine exactly where the product might have gone.
[Pause.]
SECRETARY VENEMAN: Well, we are taking all appropriate action. We first need to identify where the product went before we can take action. I am not saying that we are not taking action. As I said in my opening remarks, we are going to take all appropriate actions based upon the investigation.
I know that the tendency is to want to know all the answers right away. And we decided that we couldn't wait to give the public the information about this situation, but we certainly don't have all answers today. And that is why we will be continuing to update both our web site and the call in number that I indicated earlier and we will be conducting daily press briefings to update you on what is going on.
Thank you.
#
==============================================
January 08,200l 3:03 PM freas ...
PDF] Freas, William TSS SUBMISSION File Format: PDF/Adobe Acrobat - Page 1.
J Freas, William
From: Sent: To:
Subject: Terry S. Singeltary Sr. [flounder@wt.net]
Monday, January 08,200l 3:03 PM freas ...
CJD/BSE (aka madcow) Human/Animal TSE’s--U.S.--Submission To Scientific Advisors and Consultants Staff January 2001 Meeting (short version)
TSS
########### http://mailhost.rz.uni-karlsruhe.de/warc/bse-l.html ############
Subject: Re: Press Review, Dec 26 AM : Mad Cow in USA
From: Roland Heynkes <roland@HEYNKES.DE>
Reply To: Bovine Spongiform Encephalopathy <BSE-L@UNI-KARLSRUHE.DE>
Date: Fri, 26 Dec 2003 12:24:33 +0100
Content-Type: text/plainParts/Attachments: text/plain (65 lines)
######## Bovine Spongiform Encephalopathy <BSE-L@UNI-KARLSRUHE.DE> #########
> U.S. Expert Thought Mad Cow Was Unlikely in U.S Reuters.com
> WASHINGTON (Reuters) - America's foremost mad cow expert
> George Gray thought it unlikely that bovine spongiform
> encephalopathy (BSE) would find its way into the United
> States until Tuesday's news of the first reported case.
> > http://www.reuters.com/newsArticle.jhtml?type=scienceNews&storyID=4039818 >
Journalists seem to be part of the problem in the USA. I wonder how one can reach the absurd conclusion that Prof. George Gray is America's foremost mad cow expert. Why not George Bush or his dog? It is so clear that Paul Brown, Byron Caughey, Michael Greger, Tom Pringle, Robert G. Rohwer and several other US scientists are much more experienced and understand much better the US BSE problem. For me even Stanley Prusiner and Terry come far before this Prof. Gray as BSE experts.
The US public now experiences the problem, that amateurs and scientific prostitutes are presented by the media as BSE experts. The people become filled up with a chaos of contradictory information and they have no chance to decide by them self, who of the interviewed persons is a real expert and who is only a boaster. This is a consequence of the fact that US TSE scientists did not take the chance to learn from what happened in Europe. The had time enough to organize consensus conferences in order to find out and publish independently from government, what is really known and what is still unclear about BSE and the other TSE. They didn't and they even did not try to organize a cooperative, interdisciplinary literature research in order to learn what many more than 10.000 published scientific TSE articles could tell us, if we could read and understand all this stuff and if we could put together the dispersed pieces of information.
Now the perhaps somewhat surprised US public will learn, that the TSE scientists do not have a common ground of knowledge and that they are all far away from being familiar with the literature of their own field of research. It will be frustrating for the taxpayers to see that the experts are unable to answer their most important questions. But it is of course unlikely that the people will understand, that this problems are consequences of the fact that there still is no institute for theoretical TSE science, which undoubtedly would have to be a virtual institute, connecting the most experienced experts in all relevant institutes by modern methods of communication. It would be already a big step forward when the Americans would learn from their now beginning BSE crisis, that their federal government is far away from having an independent scientific risk assessment in place and that politicians as well as journalists abuse instead of use science.
kind regards
Roland
########### http://mailhost.rz.uni-karlsruhe.de/warc/bse-l.html ############
2023 USA CONFIRMS ANOTHER CASE OF MAD COW DISEASE, TENNESSEE ATYPICAL L-TYPE BSE, THE MOST VIRULENT STRAIN OF BSE TO DATE.
2023, TSE Prion Transmission Studies now, most all show everything they said back then, is wrong today.
YOU do know that the USDA et al are testing so few cattle for BSE, your not going to find a case of BSE, unless it's real bad.
YOU do know that science, transmission studies, molecular and lab animals, mice, macaque, show that atypical BSE transmission will not look like nvCJD, but sporadic CJD.
YOU do know there has been a systematic reduction in USA cattle, imo, due to suspect BSE cases that are being disposed of without testing. i remember the 9,200 cases that were suspect.
YOU do know that the FDA mad cow feed ban, has failed us terribly, and with CWD and cervid, pigs, sheep, macaques and now cattle, BY ORAL ROUTES, the feed ban must be changed immediately. no i'm not kidding. see below.
YOU do know CJD IN HUMANS IS RISING.
YOU do know that CWD will be our mad cow disease, because the USDA et al did such a good job of covering it all up, even with my best efforts not to let that happen, i failed terribly.
YOU do know there has been recent of cases of mad cow disease in many countries recently, the atypical BSE.
YOU do know that the OIE are changing their spontaneous/sporadic horse shit science now, and admitting the transmission studies now are concerning, and then they went and made atypical BSE, just like atypical Scrapie, a legal trading commodity.
the consumers lose again...it's just science.
I believe, without a doubt, IMO, since that day the mad cow stole Christmas, there has been a systematic effort to slaughter all suspect cattle with BSE of any strain, without testing, so an eradication scorched earth policy could try and eradicate mad cow disease in the USA, without anyone knowing it. remember the infamous ENHANCED BSE HARVARD EFFORTS, where all the atypical BSE cases were showing up, then the USDA et al abruptly shut that down. what about those 9,200
where, here's your sign.
Merry Christmas, i remember that cow well, December 2003. MOM DOD 12/14/97
WHAT about those 9,200 suspect BSE secret test???
"These 9,200 cases were different because brain tissue samples were preserved with formalin, which makes them suitable for only one type of test--immunohistochemistry, or IHC."
THIS WAS DONE FOR A REASON!
THE IHC test has been proven to be the LEAST LIKELY to detect BSE/TSE in the bovine, and these were probably from the most high risk cattle pool, the ones the USDA et al, SHOULD have been testing. ...TSS
SCIENCE NEWS JULY 13, 2004 / 5:02 PM
USDA advised against mad cow test in 2002
By STEVE MITCHELL, United Press International
"Why are we using Bio-Rad instead of Prionics if they are as bad as the (USDA) would have us believe with all these 'inconclusives?' asked Terry Singletary, coordinator of CJD Watch, an advocacy group for patients and family members. His mother died of a rare form of CJD called Heidenhain Variant, which has not been linked with mad cow disease.
SCIENCE NEWS MAY 11, 2004 / 10:15 PM
USDA orders silence on mad cow in Texas
By STEVE MITCHELL, United Press International
Audit Report Animal and Plant Health Inspection Service Bovine Spongiform Encephalopathy (BSE) Surveillance Program – Phase II
and
Food Safety and Inspection Service Controls Over BSE Sampling, Specified Risk Materials, and Advanced Meat Recovery Products - Phase III
Consumer Health
Inspector to file charges against USDA
By Steve Mitchell Sep 6, 2005, 22:46 GMT
PAST US MAD COW CASES AND TRACEABILITY PROBLEMS, WHAT'S IT GOING TO TAKE?
AUG. 11, 2017
***>Assuming no other factors influenced the levels of correct diagnosis and that the numbers estimated for 1997 to 1999 were a true representation of the potential under-diagnosis of the entire epidemic up until 1999, then the total number of missed cases positive for BSE could have been in the region of 5,500.
***>As a result, using more sensitive diagnostic assays, we were able to diagnose BSE positive cattle from the years 1997-1999 inclusive that were originally negative by vacuolation. From these data we have estimated that approximately 3% of the total suspect cases submitted up until the year 1999 were mis-diagnosed.
YOU know, Confucius is confused again LOL, i seem to have remembered something in line with this here in the USA...
USDA did not test possible mad cows
By Steve Mitchell
United Press International
Published 6/8/2004 9:30 PM
WASHINGTON, June 8 (UPI) -- The U.S. Department of Agriculture claims ittested 500 cows with signs of a brain disorder for mad cow disease last year, but agency documents obtained by United Press International show the agency tested only half that number.
"These 9,200 cases were different because brain tissue samples were preserved with formalin, which makes them suitable for only one type of test--immunohistochemistry, or IHC."
THIS WAS DONE FOR A REASON!
THE IHC test has been proven to be the LEAST LIKELY to detect BSE/TSE in the bovine, and these were probably from the most high risk cattle pool, the ones the USDA et al, SHOULD have been testing. ...TSS
TEXAS 2ND MAD COW THAT WAS COVERED UP, AFTER AN ACT OF CONGRESS, AND CALLS FROM TSE PRION SCIENTIST AROUND THE GLOBE, THIS 2ND MAD COW IN TEXAS WAS CONFIRMED
THE USDA MAD COW FOLLIES POSITIVE TEST COVER UP
JOHANNS SECRET POSTIVE MAD COW TEST THAT WERE IGNORED
OIG AND THE HONORABLE FONG CONFIRMS TEXAS MAD AFTER AN ACT OF CONGRESS 7 MONTHS LATER
TEXAS MAD COW
THEY DID FINALLY TEST AFTER SITTING 7+ MONTHS ON A SHELF WHILE GW BORE THE BSE MRR POLICY, i.e. legal trading of all strains of TSE. now understand, i confirmed this case 7 months earlier to the TAHC, and then, only after i contacted the Honorable Phyllis Fong and after an act of Congress, this animal was finally confirmed ;
During the course of the investigation, USDA removed and tested a total of 67 animals of interest from the farm where the index animal's herd originated. All of these animals tested negative for BSE. 200 adult animals of interest were determined to have left the index farm. Of these 200, APHIS officials determined that 143 had gone to slaughter, two were found alive (one was determined not to be of interest because of its age and the other tested negative), 34 are presumed dead, one is known dead and 20 have been classified as untraceable. In addition to the adult animals, APHIS was looking for two calves born to the index animal. Due to record keeping and identification issues, APHIS had to trace 213 calves. Of these 213 calves, 208 entered feeding and slaughter channels, four are presumed to have entered feeding and slaughter channels and one calf was untraceable.
NEW URL LINK;
Executive Summary In June 2005, an inconclusive bovine spongiform encephalopathy (BSE) sample from November 2004, that had originally been classified as negative on the immunohistochemistry test, was confirmed positive on SAF immunoblot (Western blot). The U.S. Department of Agriculture (USDA) identified the herd of origin for the index cow in Texas; that identification was confirmed by DNA analysis. USDA, in close cooperation with the Texas Animal Health Commission (TAHC), established an incident command post (ICP) and began response activities according to USDA’s BSE Response Plan of September 2004. Response personnel removed at-risk cattle and cattle of interest (COI) from the index herd, euthanized them, and tested them for BSE; all were negative. USDA and the State extensively traced all at-risk cattle and COI that left the index herd. The majority of these animals entered rendering and/or slaughter channels well before the investigation began. USDA’s response to the Texas finding was thorough and effective.
snip...
Trace Herd 3 The owner of Trace Herd 3 was identified as possibly having received an animal of interest. The herd was placed under hold order on 7/27/05. The herd inventory was conducted on 7/28/05. The animal of interest was not present within the herd, and the hold order was released on 7/28/05. The person who thought he sold the animal to the owner of Trace Herd 3 had no records and could not remember who else he might have sold the cow to. Additionally, a search of GDB for all cattle sold through the markets by that individual did not result in a match to the animal of interest. The animal of interest traced to this herd was classified as untraceable because all leads were exhausted.
Trace Herd 4 The owner of Trace Herd 4 was identified as having received one of the COI through an order buyer. Trace Herd 4 was placed under hold order on 7/29/05. A complete herd inventory was conducted on 8/22/05 and 8/23/05. There were 233 head of cattle that were examined individually by both State and Federal personnel for all man-made identification and brands. The animal of interest was not present within the herd. Several animals were reported to have died in the herd sometime after they arrived on the premises in April 2005. A final search of GDB records yielded no further results on the eartag of interest at either subsequent market sale or slaughter. With all leads having been exhausted, this animal of interest has been classified as untraceable. The hold order on Trace Herd 4 was released on 8/23/05.
Trace Herd 5 The owner of Trace Herd 5 was identified as having received two COI and was placed under hold order on 8/1/05. Trace Herd 5 is made up of 67 head of cattle in multiple pastures. During the course of the herd inventory, the owner located records that indicated that one of the COI, a known birth cohort, had been sold to Trace Herd 8 where she was subsequently found alive. Upon completion of the herd inventory, the other animal of interest was not found within the herd. A GDB search of all recorded herd tests conducted on Trace Herd 5 and all market sales by the owner failed to locate the identification tag of the animal of interest and she was subsequently classified as untraceable due to all leads having been exhausted. The hold order on Trace Herd 5 was released on 8/8/05.
Trace Herd 6 The owner of Trace Herd 6 was identified as possibly having received an animal of interest and was placed under hold order on 8/1/05. This herd is made up of 58 head of cattle on two pastures. A herd inventory was conducted and the animal of interest was not present within the herd. The owner of Trace Herd 6 had very limited records and was unable to provide further information on where the cow might have gone after he purchased her from the livestock market. A search of GDB for all cattle sold through the markets by that individual did not result in a match to the animal of interest. Additionally, many of the animals presented for sale by the owner of the herd had been re-tagged at the market effectually losing the traceability of the history of that animal prior to re-tagging. The animal of interest traced to this herd was classified as untraceable due to all leads having been exhausted. The hold order on Trace Herd 6 was released on 8/3/05.
Trace Herd 7 The owner of Trace Herd 7 was identified as having received an animal of interest and was placed under hold order on 8/1/05. Trace Herd 7 contains 487 head of cattle on multiple pastures in multiple parts of the State, including a unit kept on an island. The island location is a particularly rough place to keep cattle and the owner claimed to have lost 22 head on the island in 2004 due to liver flukes. Upon completion of the herd inventory, the animal of interest was not found present within Trace Herd 7. A GDB search of all recorded herd tests conducted on Trace Herd 7 and all market sales by the owner failed to locate the identification tag of the animal of interest. The cow was subsequently classified as untraceable. It is quite possible though that she may have died within the herd, especially if she belonged to the island unit. The hold order on Trace Herd 7 was released on 8/8/05.
NEW URL LINK;
NOT to forget ;
It should be noted that since the enhanced surveillance program began, USDA has also conducted approximately 9,200 routine IHC tests on samples that did not first undergo rapid testing. This was done to ensure that samples inappropriate for the rapid screen test were still tested, and also to monitor and improve upon IHC testing protocols. Of those 9,200 routine tests, one test returned a non-definitive result on July 27, 2005. That sample underwent additional testing at NVSL, as well as at the Veterinary Laboratories Agency in Weybridge, England, and results were negative. ......
http://www.aphis.usda.gov/lpa/issues/bse_testing/test_results.html
r i g h t ............
By Steve Mitchell
United Press International
Published 2/9/2004 7:06 PM
WASHINGTON, Feb. 9 (UPI) -- The federal laboratory in Ames, Iowa, that conducts all of the nation's tests for mad cow disease has a history of producing ambiguous and conflicting results -- to the point where many federal meat inspectors have lost confidence in it, Department of Agriculture veterinarians and a deer rancher told United Press International.
The veterinarians also claim the facility -- part of the USDA and known as the National Veterinary Services Laboratories -- has refused to release testing results to them and has been so secretive some suspect it is covering up additional mad cow cases. ...
-------- Original Message --------
Subject: re-USDA's surveillance plan for BSE aka mad cow disease
Date: Mon, 02 May 2005 16:59:07 -0500
From: "Terry S. Singeltary Sr."
To: paffairs@oig.hhs.gov, HHSTips@oig.hhs.gov, contactOIG@hhsc.state.tx.us
Greetings Honorable Paul Feeney, Keith Arnold, and William Busbyet al at OIG, ...............
snip...
There will be several more emails of my research to follow.
I respectfully request a full inquiry into the cover-up of TSEs in the United States of America over the past 30 years. I would be happy to testify...
Thank you,I
am sincerely,
Terry S. Singeltary Sr. P.O. Box Bacliff, Texas USA 77518 xxx xxx xxxx
Date: June 14, 2005 at 1:46 pm PST
In Reply to: Re: Transcript Ag. Secretary Mike Johanns and Dr. John Clifford, Regarding further analysis of BSE Inconclusive Test Results posted by TSS on June 13, 2005 at 7:33 pm:
Secretary of Agriculture Ann M. Veneman resigns Nov 15 2004, three days later inclusive Mad Cow is announced. June 7th 2005 Bill Hawks Under Secretary for Marketing and Regulatory Programs resigns. Three days later same mad cow found in November turns out to be positive. Both resignations are unexpected. just pondering...TSS
-------- Original Message --------
Subject: Re: BSE 'INCONCLUSIVE' COW from TEXAS ???
Date: Mon, 22 Nov 2004 17:12:15 -0600
From: "Terry S. Singeltary Sr."
To: Carla Everett References: <[log in to unmask]><[log in to unmask] us>
Greetings Carla,
still hear a rumor;
Texas single beef cow not born in Canada no beef entered the food chain?
and i see the TEXAS department of animal health is ramping up for something, but they forgot a url for update?
I HAVE NO ACTUAL CONFIRMATION YET...
can you confirm???
terry
snip...see full transmission;
UNITED STATES DEPARTMENT OF AGRICULTURE OFFICE OF INSPECTOR GENERAL STATEMENT OF THE HONORABLE PHYLLIS K. FONG INSPECTOR GENERAL Before the HOUSE APPROPRIATIONS SUBCOMMITTEE ON AGRICULTURE, RURAL DEVELOPMENT, FOOD AND DRUG ADMINISTRATION, AND RELATED AGENCIES March 1, 2006
snip...
For release only by the House Committee on Appropriations Good morning, Mr. Chairman and Members of the Subcommittee. I thank you for inviting me to testify before you today to discuss the activities of the Office of Inspector General (OIG) and to provide information about our oversight of the Department of Agriculture’s (USDA) programs and operations. I would like to introduce the members of the OIG senior management team who are here with me today: Kathy Tighe, our new Deputy Inspector General; Robert Young, Assistant Inspector General for Audit; Mark Woods, Assistant Inspector General for Investigations; and Suzanne Murrin, Assistant Inspector General for Policy Development and Resources Management. I welcome this opportunity to provide the Subcommittee with an overview of the highlights of our audit and investigative activity over the past year. Fiscal Year 2005 presented many difficult challenges for the USDA and our country’s agricultural producers and consumers. In addition to administering programs relied upon by farmers and rural communities and managing the $128 billion in public resources entrusted to the Department, USDA assumed significant responsibilities responding to the hurricanes that ravaged the Gulf Coast in 2005 and addressing the threat of plant and animal disease. To best serve the Department, our Congressional oversight committees, and the general public, OIG has formally prioritized, organized, and planned our work according to three
2
central objectives. I will present my testimony to the Subcommittee according to the framework of these three objectives: supporting Safety, Security, and Public Health in USDA programs and operations; protecting Program Integrity as USDA provides assistance to individuals and entities; and improving the Department’s Management of Public Resources. I. Safety, Security, and Public Health The BSE Surveillance Program and SRM Controls We recently issued our second report focusing on the Department’s efforts to establish and enforce effective, interlocking safeguards to protect producers and consumers from Bovine Spongiform Encephalopathy (BSE), commonly referred to as “mad cow disease.” Our February 2006 report reviewed the Animal and Plant Health Inspection Service’s (APHIS) implementation of its expanded BSE surveillance program and the Food Safety and Inspection Service’s (FSIS) controls to prevent banned specified risk materials (SRM) from entering our Nation’s food supply. We found that USDA made significant efforts to implement and improve the expanded surveillance program. The Department faced many challenges in a short period of time to establish the necessary processes, controls, and infrastructure needed for this massive effort. In our recent report, we discuss specific areas where we believe corrective actions were not fully effective in addressing our prior findings and recommendations on issues such as obtaining representative samples of the U.S. herd, identifying and obtaining samples from high-risk surveillance streams, and ensuring the completeness/accuracy of data. The Department
3
has responded to our report with immediate actions. For example, at the Secretary’s direction, APHIS revised its testing protocols to provide for additional confirmatory procedures when inconclusive test results occur. Also, both APHIS and FSIS agreed with all OIG recommendations, and they have corrected, or have developed action plans to correct, the program weaknesses identified. APHIS’ Implementation of the Expanded Surveillance Plan APHIS obtained significantly more samples for testing than it originally anticipated would be needed to achieve its stated level of confidence in estimating the prevalence of BSE in the U.S. herd. The voluntary nature of the surveillance program, however, makes it difficult to determine how successful USDA was in obtaining a representative proportion of high-risk cattle for testing. OIG found that APHIS’ various statistical approaches to determining the prevalence of BSE mitigate some, but not all, of the limitations associated with its data and the agency’s underlying assumptions in the design and implementation of its surveillance program. The accuracy of the underlying data is critical to the development of a future maintenance surveillance program. We recommended that APHIS disclose the limitations in its surveillance program and underlying data when it makes its final assessment of the prevalence of BSE in the U.S. We also found that USDA needed to strengthen its processes to ensure the quality and capability of its BSE testing program, especially when inconclusive test results occur. We recommended that USDA re-evaluate and adjust its testing protocols based on its
4
evaluation of emerging science and strengthen its proficiency testing and quality assurance reviews at participating laboratories. Evaluation of FSIS Processes Regarding SRMs To examine FSIS’ inspection procedures to enforce regulations to prevent risk materials in meat products, OIG reviewed the SRM plans of several meat processing facilities, observed FSIS inspections, and evaluated the effectiveness of controls during the slaughter process. FSIS technical experts assisted us in these reviews. We did not identify SRMs entering the food supply during our plant visits. However, we could not determine whether required SRM procedures were followed or were adequate due to the lack of specificity in the plans. We found that the plants lacked documentation of compliance with SRM control procedures and FSIS actions to validate such compliance. In addition to the control issues we identified regarding SRM procedures at slaughter and processing establishments, we found that FSIS’ information system could not readily provide FSIS with the data it needed to identify trends in SRM violations. The expanded stage of USDA’s BSE surveillance program is now nearing its end. Accordingly, it is important that the issues we have raised be considered as USDA completes its BSE surveillance program and reports on the prevalence of BSE in the U.S. herd. The Department has responded to our report with immediate action and agreed to address all of our findings and recommendations.
5 Assessing USDA Controls for Beef Exported to Japan On January 20, 2006, Japanese officials announced that they had banned any further imports of beef products from the United States, based on the discovery that a U.S. plant had shipped a veal product containing vertebral column material that was prohibited by the terms of an agreement with Japan. On the same date, in response to Japan’s decision, the Secretary announced 12 actions USDA would undertake to facilitate resuming trade. These actions include delisting and investigating the plant that exported the ineligible product, requiring a second signature on export certificates, providing training to inspection personnel on export certification, and holding meetings with inspection officials and industry representatives to reaffirm program requirements. Shortly thereafter, the Secretary requested OIG to audit the adequacy of USDA’s coordination and control processes for the Beef Export Verification (BEV) program for Japan. OIG’s report, issued on February 16, 2006, concluded that the Agricultural Marketing Service (AMS) and FSIS could strengthen their controls over the BEV program by improving processes used to communicate BEV program requirements, clearly defining roles and responsibilities, and implementing additional oversight of FSIS inspection personnel. In response to our recommendations, the agencies agreed to an array of actions. AMS agreed to maintain a list of specific, export-eligible products for each facility with an approved BEV program; to systematically notify FSIS when any establishment is approved/delisted from a BEV program; and to review all establishments in the BEV program to ensure that they adhere to program requirements. FSIS agreed to
6
clarify the roles and responsibilities of FSIS personnel involved at each stage of the export verification process; expedite the development of export certification training; and increase supervisory oversight of the export certification process. OIG believes that the full implementation of these measures will strengthen and improve the Department’s compliance with BEV program requirements. Assessment of the Equivalence of the Canadian Beef Inspection System Last year, my testimony discussed OIG’s findings from our audit of APHIS’ oversight of the importation of beef products from Canada. Our work on that audit led us to conduct an evaluation of FSIS’ assessment of the equivalence of the Canadian food safety inspection system, which we issued in December 2005. The then FSIS Administrator and the Under Secretary for Food Safety had identified concerns with the Canadian inspection system in late 2003. Our audit determined that FSIS did not fully address the issues raised by USDA officials in a timely manner. For example, in July 2003 FSIS found that Canadian inspection officials were not enforcing certain pathogen reduction and HACCP system regulations. These same types of concerns were identified again in June 2005. At the time of our audit, FSIS did not have protocols for evaluating deficiencies in a foreign country’s inspection system which could be used to question the system’s equivalence to U.S. standards. In addition, FSIS had not instituted compensating controls (such as increased port-of-entry testing) to strengthen public health protections while
7
deficiencies were present. During the period of January 2003–May 2005, 4.4 billion pounds of Canadian processed product entered the U.S., even though FSIS officials questioned the equivalence of the Canadian inspection system. FSIS agreed with OIG’s five recommendations, which included implementing protocols to determine which deficiencies would lead FSIS to question whether a foreign country’s inspection system is equivalent to the U.S. system. In response to the report, FSIS committed to develop these protocols by March 2006 and to implement them immediately thereafter. Oversight of FSIS Recalls For the past several years we have testified about our continuing work regarding adulterated beef product recalls. In July 2004, a Pennsylvania firm initiated a recall of approximately 170,000 pounds of ground beef patties because of mislabeling. Approximately one-fourth of this product was made, in part, from beef trim from Canada which was not eligible for import to the U.S., following the detection of a Canadian cow with BSE. In May 2005, we reported on the adequacy of FSIS’ effectiveness checks and the agency’s oversight of the recall. Overall, we concluded that FSIS had strengthened its procedures regarding the agency’s oversight of recalls. However, we noted that FSIS personnel did not determine the amount of product purchased by firms on 26 of the 58 completed effectiveness checks. This resulted in reduced assurance that mislabeled product was completely retrieved from distribution. Agency officials concurred with the firms’ assertions that the product had been removed from the marketplace. In response to
8
our recommendations, FSIS agreed to provide more specific direction to its personnel on identifying and evaluating the amount of product purchased. The Subcommittee has been interested in OIG’s investigation of a Pennsylvania company’s recall of meat products. This remains an ongoing civil fraud investigation and we will be pleased to provide information on its resolution to the Subcommittee upon its conclusion.
snip. ...9 of 34 pages. ...tss
see archived url;
Owner and Corporation Plead Guilty to Defrauding Bovine Spongiform Encephalopathy (BSE) Surveillance Program
An Arizona meat processing company and its owner pled guilty in February 2007 to charges of theft of Government funds, mail fraud, and wire fraud. The owner and his company defrauded the BSE Surveillance Program when they falsified BSE Surveillance Data Collection Forms and then submitted payment requests to USDA for the services. In addition to the targeted sample population (those cattle that were more than 30 months old or had other risk factors for BSE), the owner submitted to USDA, or caused to be submitted, BSE obex (brain stem) samples from healthy USDA-inspected cattle. As a result, the owner fraudulently received approximately $390,000. Sentencing is scheduled for May 2007.
snip...
4 USDA OIG SEMIANNUAL REPORT TO CONGRESS FY 2007 1st Half
NEW URL LINK;
Audit Report Animal and Plant Health Inspection Service Bovine Spongiform Encephalopathy (BSE) Surveillance Program – Phase II and Food Safety and Inspection Service Controls Over BSE Sampling, Specified Risk Materials, and Advanced Meat Recovery Products - Phase III
UNITED STATES DEPARTMENT OF AGRICULTURE OFFICE OF INSPECTOR GENERAL Washington, D.C. 20250 January 25, 2006 REPLY TO ATTN OF: 50601-10-KC
TO: W. Ron DeHaven Administrator Animal and Plant Health Inspection Service Barbara Masters Administrator Food Safety and Inspection Service ATTN: William J. Hudnall Deputy Administrator Marketing Regulatory Program Business Services William C. Smith Assistant Administrator Office of Program Evaluation, Enforcement, and Review
FROM: Robert W. Young /s/ Assistant Inspector General for Audit
SUBJECT: Animal and Plant Health Inspection Service - Bovine Spongiform Encephalopathy (BSE) Surveillance Program - Phase II and Food Safety and Inspection Service - Controls Over BSE Sampling, Specified Risk Materials, and Advanced Meat Recovery Products - Phase III
This report presents the results of our audit of the enhanced BSE surveillance program and controls over specified risk materials and advanced meat recovery products. Your written response to the official draft report, dated January 20, 2006, is included as exhibit G with excerpts of the response and the Office of Inspector General’s (OIG) position incorporated into the Findings and Recommendations section of the report, where applicable. We accept the management decisions for all recommendations. Please follow your agency’s internal procedures in forwarding documentation for final action to the Office of the Chief Financial Officer (OCFO). We are providing a separate memorandum to the agencies and OCFO that provides specific information on the actions to be completed to achieve final action. We appreciate your timely response and the cooperation and assistance provided to our staff during the audit USDA/OIG-A/50601-10-KC/ Page i
Executive Summary
Animal and Plant Health Inspection Service - Bovine Spongiform Encephalopathy (BSE) Surveillance Program - Phase II and Food Safety and Inspection Service - Controls Over BSE Sampling, Specified Risk Materials, and Advanced Meat Recovery Products - Phase III
Results in Brief This report evaluates elements of the interlocking safeguards in place to protect United States (U.S.) beef from Bovine Spongiform Encephalopathy, widely known as BSE or "mad cow disease." Since 1990, the U.S. Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), has led a multi-agency effort to monitor and prevent BSE from entering the food supply. After discovering a BSE-positive cow in December 2003, APHIS expanded its BSE surveillance program. To further protect the food supply, USDA banned materials identified as being at risk of carrying BSE (specified risk materials (SRM)), such as central nervous system tissue. As part of this effort, USDA’s Food Safety and Inspection Service (FSIS) required beef slaughter and processing facilities to incorporate controls for handling such materials into their operational plans. Onsite FSIS inspectors also inspect cattle for clinical signs in order to prevent diseased animals from being slaughtered for human consumption. To evaluate the effectiveness of the safeguards, we assessed APHIS’ implementation of the expanded surveillance program, as well as FSIS’ controls to prevent banned SRMs from entering the food supply.
In June 2004, APHIS implemented its expanded surveillance program; participation by industry in this surveillance program is voluntary. As of May 2005, over 350,000 animals were sampled and tested for BSE. To date, two animals tested positive for BSE; one tested positive after implementation of the expanded surveillance program.
USDA made significant efforts to implement the expanded BSE surveillance program. Much needed to be done in a short period of time to establish the necessary processes, controls, infrastructure, and networks to assist in this effort. In addition, extensive outreach and coordination was undertaken with other Federal, State, and local entities, private industry, and laboratory and veterinary networks. This report provides an assessment as to the progress USDA made in expanding its surveillance effort and the effectiveness of its controls and processes. This report also discusses the limitations of its program and data in assessing the prevalence of BSE in the U.S. herd.
snip...
40 ELISA test procedures require two additional (duplicate) tests if the initial test is reactive, before final interpretation. If either of the duplicate tests is reactive, the test is deemed inconclusive.
41 Protocol for BSE Contract Laboratories to Receive and Test Bovine Brain Samples and Report Results for BSE Surveillance Standard Operating Procedure (SOP), dated October 26, 2004.
42 The NVSL conducted an ELISA test on the original material tested at the contract laboratory and on two new cuts from the sample tissue.
43 A visual examination of brain tissue by a microscope.
44 A localized pathological change in a bodily organ or tissue.
SNIP...
PLEASE SEE FLAMING EVIDENCE THAT THE USDA ET AL COVERED UP MAD COW DISEASE IN TEXAS ;
PAGE 43;
Section 2. Testing Protocols and Quality Assurance Controls
snip...
FULL TEXT 130 PAGES
NEW URL LINK;
Panel questions Homeland Security inspection of food By Jerry Hagstrom, CongressDailyPM
Agriculture Department Inspector General Phyllis Fong and several members of the House Agriculture Appropriations Subcommittee expressed concern Wednesday about whether the Homeland Security Department is properly inspecting food and other agricultural items when they arrive in the United States. Neither Fong nor the committee members provided any hard evidence of problems, but Fong said she and the Homeland Security Department's inspector general were conducting a joint review of inspection functions. Once the province of USDA's Animal and Plant Health Inspection Service, they were transferred to Homeland Security when that department was created.
"We are still very concerned about whether that broader inspection is being carried out," Fong said in testimony.
Fong said the joint inquiry was only in the stage of field investigation and had reached no conclusions.
Rep. Marcy Kaptur, D-Ohio, suggested the inspector general focus on the impact of the inspections on plants from other countries. House Agriculture Appropriations Subcommittee Chairman Henry Bonilla, R-Texas, said he had asked the Government Accountability Office to investigate the food inspection process. Rep. Tom Latham, R-Iowa, who noted he also sits on the House Homeland Security Appropriations Subcommittee, said, "Apparently there are still some unresolved issues about what the heck [the department] is doing."
Under questioning from Agriculture Appropriations ranking member Rosa DeLauro, D-Conn., Fong acknowledged it was APHIS Administrator Ron DeHaven who made the decision not to conduct further tests on a Texas cow whose initial test for bovine spongiform encephalopathy, or mad cow disease, was inconclusive. Further tests ordered by the inspector general several months later showed that the cow had the disease.
DeLauro noted that when Japan stopped importing U.S. beef in December, USDA moved faster to deal with that issue than it had when the Texas cow was tested, a sign, she said, that USDA was more concerned about trade than human health.
"We are taking years to deal with public health," DeLauro said. "If APHIS is in charge of avian influenza and we have the kinds of problems existing here, it doesn't bode well for public safety."
http://www.govexec.com/dailyfed/0306/030106cdpm2.htm
see archived url;
Comments on technical aspects of the risk assessment were then submitted to FSIS.
Comments were received from Food and Water Watch, Food Animal Concerns Trust (FACT), Farm Sanctuary, R-CALF USA, Linda A Detwiler, and Terry S. Singeltary.
This document provides itemized replies to the public comments received on the 2005 updated Harvard BSE risk assessment. Please bear the following points in mind:
NEW URL LINK;
Owens, Julie From: Terry S. Singeltary Sr. [flounder9@verizon.net]
Sent: Monday, July 24, 2006 1:09 PM To: FSIS RegulationsComments
Subject: [Docket No. FSIS-2006-0011] FSIS Harvard Risk Assessment of Bovine Spongiform Encephalopathy (BSE) Page 1 of 98 8/3/2006
Greetings FSIS, I would kindly like to comment on the following ;
NEW URL LINK;
Suppressed peer review of Harvard study October 31, 2002.
October 31, 2002 Review of the Evaluation of the Potential for Bovine Spongiform Encephalopathy in the United States Conducted by the Harvard Center for Risk Analysis, Harvard School of Public Health and Center for Computational Epidemiology, College of Veterinary Medicine, Tuskegee University Final Report Prepared for U.S. Department of Agriculture Food Safety and Inspection Service Office of Public Health and Science Prepared by RTI Health, Social, and Economics Research Research Triangle Park, NC 27709 RTI Project Number 07182.024
NEW URL LINK;
Sunday, February 14, 2010
[Docket No. FSIS-2006-0011] FSIS Harvard Risk Assessment of Bovine Spongiform Encephalopathy (BSE)
snip...SEE FULL TEXT;
BSE research project final report 2005 to 2008 SE1796 SID5
BSE REDBOOK
Preliminary Notification
The director of NVSL is responsible for immediately notifying the APHIS, Veterinary Services (VS) deputy administrator when tests suggest a presumptive diagnosis of BSE. Once NVSL has made a presumptive diagnosis of BSE, APHIS and FSIS field activities will also be initiated. APHIS will receive notification (either confirming or not confirming NVSL's diagnosis) from the United Kingdom anywhere between 24 and 96 hours. (The international animal health community has recognized the United Kingdom's Central Veterinary Laboratory {CVL} as the world's reference laboratory for diagnosing BSE. Other countries, including Belgium, France, Ireland, Luxembourg, the Netherlands, Portugal, and Switzerland, have all sent samples to this lab to confirm their first case of BSE).
snip...
BSE Response Team
The BSE Response Team will complete the informational memorandum for the Secretary. The Team will prepare the letter to the Office of International Epizootics (OIE), the international animal health organization, for signature by the APHIS, VS Deputy Administrator. OIE requires that all countries submit official notification within 24 hours of confirming a diagnosis of BSE. The BSE Response Team and the office of the APHIS, VS Deputy Administrator would coordinate a teleconference to inform all APHIS regional directors and AVIC'S. The BSE Response Team and the office of the FSIS, OPHS Deputy Administrator would coordinate a teleconference to inform all regional and field FSIS offices. The BSE Response Team would coordinate a teleconference to notify other Federal agencies. The BSE Response Team would coordinate a teleconference to notify key industry/consumer representatives. The BSE Response Team and APHIS International Services would notify foreign embassies. The BSE Response Team would establish a toll-free 800 telephone line for industry representatives, reporters, and the public. The BSE Response Team would coordinate with APHIS Legislative and Public Affairs and USDA office of Communications to issue a press release the day the diagnosis is confirmed. The press release would announce a press conference to be held the morning after the diagnosis is confirmed......
THE END
From: Terry S. Singeltary Sr. (216-119-138-126.ipset18.wt.net)
Subject: Hunkering down in the APHIS BSE Situation Room...
Date: February 14, 2000 at 9:04 am PST
Subject: hunkering down in the APHIS BSE Situation Room
Date: Wed, 12 May 1999 01:55:54 -0800
From: tom Reply-To: Bovine Spongiform Encephalopathy
To: BSE-L@uni-karlsruhe.de
i am looking now a bizarre Oct 98 internal USDA publication describing a james bond-type US effort to control media should the long-anticipated first case of BSE in the US be admitted.
'Players' on the 27 member BSE Response Team are to be flown in from all over the country to a BSE Headquarters 'situation room' apparently an underground bunker in Riverdale, Maryland under the command of the Assistant Secretary of Marketing.
Authentic press releases are already prepared and ready to go out after a few specifics have been filled in. They are spelled out in a separate document, the BSE Red Book, aka BSE Emergency Disease Guidelines.
Aphis' National Veterinary Services Laboratories (NVSL) activates team assembly. From the time a bovine brain sample is submitted, it takes 14-18 days to confirm a diagnosis of BSE. In the first 10-13 days, NVSL have enough information to determine the need for additional tests. If a provisional BSE diagnosis is made, the sample is 'hand-carried' (are they going to tell the airline and customs?) to the Central Veterinary Laboratory in England for confirmation, where they are expecting a 24 to 96 hour turn-around.
I guess that means we can get the white tiger brain analyzed by Friday despite the 22 year delay to date. Maybe we could throw in a few cougar brains from NE Colorado too.
A Team Member is designated to silently monitor this listserve and www.mad-cow.org (among others) -- for what, it doesn't say. The Freedom of Information Act request from the East Coast consumer group turned up numerous top-secret USDA downloads from that site and Dealler's.
After 24 hours of secret briefings for 'select industry and trading partners' (to allow them to take positions on the commodities markets opposite the 'non-select' industry and trading partners?), a press conference will be held the next day.
There are plans to trace the cow, its lineage, its herdmates, the renderer, traceout of product, buyout of herd, farm of origin, to get the state involved to quarantine the herd (pre-arranged for all 50 states), expectations for trade bans, notification of OIE within 24 hours, media 800 numbers, spokespersons and backups, notify CDC, FDA, NIH, and many other commendable activities. The Flow Chart is a sight to behold, I will try to scan it in tomorrow.
In short, that cow is going to be toast by the time the public first hears about it.
The Plan does not speak to the scenario in which the CVL says, yes, this is bovine spongiform encephalopathy all right but it is one of your strains, not ours. Invoking their Absence of Evidence is Evidence of Absence principle, there may be no perceived need for public disclosure in this case.
USDA is caught completely unprepared if BSE first turns up in a US zoo animal. These animals could easily be diagnosed outside the "system" and be the subject of a publicity-seeking lab press release. I think this is a more likely scenario because the US has likely imported many thousands of zoo animals with advanced infections from Britain and France and there has been zero monitoring. Unlike with downer cows, anyone with the right colleagues can get ahold of a fallen zoo animal. Zoo animals enter the food chain in some cases after being rendered.
Another scenario would be some stock market speculator obtaining the Red Book and issuing a flurry of bogus but authentic-looking press releases that included bogus 800 and hacked USDA web links. The press here is so lazy and so accustomed to putting out public relation handouts as news that the objectives would be accomplished for a few hour (or days, depending on the Response Team's paralysis vis-a-vis off-flow chart events). Some people think a practise run for this happened in the Indiana case a year or two back.
The first case of nvCJD in an American will also be a public relations fiasco. In the dim bulb of the public mind, any American with mad cow disease would have gotten it from eating meat here. USDA has no way to prove that the victim acquired it on a three week trip to England in 1987. This will sound lame even to the press. All CJD is synonymous with mad cow disease in the public perception; the more often the different kinds are explained, the more their suspicions are aroused. The first case of nvCJD in an American will simply validate what they already know and just be viewed as an overdue admission from the government.
tom
___________________________________________________________
From: Terry S. Singeltary Sr. (216-119-130-102.ipset10.wt.net)
Subject: When a case of B.S.E. is found in the U.S/Response to Disease outbreak...'redbook'
Date: March 13, 2000 at 10:13 am PST
BSE Red Book 2.1-26
5.0 Response to Disease Outbreak
snip...see full report of From: Terry S. Singeltary Sr. (216-119-130-102.ipset10.wt.net) Subject: When a case of B.S.E. is found in the U.S/Response to Disease outbreak...'redbook' Date: March 13, 2000 at 10:13 am PST
Tuesday, July 14, 2009 U.S.
*** Emergency Bovine Spongiform Encephalopathy Response Plan Summary and BSE Red Book
Date: February 14, 2000 at 8:56 am PST
WHERE did we go wrong $$$
Thursday, April 6, 2023
WOAH OIE CHAPTER 11.4 . BOVINE SPONGIFORM ENCEPHALOPATHY Article 11.4.1.
BSE TESTING ONLY 25K ANNUALLY WILL NOT FIND BSE CIRCULATING IN THE USA CATTLE HERDS, UNLESS IT'S REAL BAD...THAT'S WHEN YOU HAVE PROBLEMS, AND YOUR JUST TRYING TO HOLD THE NUMBERS DOWN...IMO...terry
Sample Size Estimate for BSE Ongoing Surveillance
July 20, 2006
snip...
In addition, we aim to meet the objective of conducting ongoing surveillance at a level that meets or exceeds OIE surveillance recommendations. We believe this objective is reached by the following sampling strategy, which is sufficient to detect BSE at 1 infected animal per 1,000,000 adult cattle in the population with a high degree of confidence.
Sample Size to Meet OIE Surveillance Recommendations
APHIS is committed to maintaining BSE surveillance that at least meets OIE guidelines. The OIE surveillance guidelines for BSE recommend a target number of surveillance points for Type A surveillance based on the size of a country’s cattle population. These points are accrued over 7 consecutive years, and are weighted according to the surveillance stream and age of the animal sampled. For a large cattle population, using the design prevalence of 1 case per 100,000 adult cattle and 95 percent confidence, 300,000 total points over 7 years, or 42,857 points per year, are required for Type A surveillance (OIE 2005).
KEY POINTS In addition to a stringent feed ban imposed by the Food and Drug Administration in 1997 as well as the removal of all specified risk material which could harbor BSE, USDA has a strong surveillance program in place to detect signs of BSE in cattle in the United States. In fact, we test for BSE at levels greater than World Animal Health Organization standards. The program samples approximately 25,000 animals each year and targets cattle populations where the disease is most likely to be found. The targeted population for ongoing surveillance focuses on cattle exhibiting signs of central nervous disorders or any other signs that may be associated with BSE, including emaciation or injury, and dead cattle, as well as non-ambulatory animals. Samples from the targeted population are taken at farms, veterinary diagnostic laboratories, public health laboratories, slaughter facilities, veterinary clinics, and livestock markets.
THURSDAY, AUGUST 20, 2020
Why is USDA "only" BSE TSE Prion testing 25,000 samples a year?
see my full report here;
Wednesday, May 24, 2023
WAHIS, WOAH, OIE, United States of America Bovine spongiform encephalopathy Immediate notification
ALABAMA MAD COW FEED IN COMMERCE
e) "Big Jim's" BBB Deer Ration, Big Buck Blend, Recall # V-104-6;
Product manufactured from 02/01/2005 until 06/06/2006
RECALLING FIRM/MANUFACTURER Alabama Farmers Cooperative, Inc., Decatur, AL, by telephone, fax, email and visit on June 9, 2006. FDA initiated recall is complete.
REASON Animal and fish feeds which were possibly contaminated with ruminant based protein not labeled as
"Do not feed to ruminants".
VOLUME OF PRODUCT IN COMMERCE 125 tons
DISTRIBUTION AL and FL
END OF ENFORCEMENT REPORT FOR AUGUST 2, 2006
CWD TRANSMITS BY ORAL ROUTES TO MACAQUES, CATTLE, SHEEP, PIGS, AND CERVID...BSE Feed Regulation (21 CFR 589.2000) mad cow feed ban does not stop all that!
CWD transmits to cervid by oral routes with as little as 300NG!
PLoS One. 2020; 15(8): e0237410.
Published online 2020 Aug 20. doi: 10.1371/journal.pone.0237410
PMCID: PMC7446902
PMID: 32817706
Very low oral exposure to prions of brain or saliva origin can transmit chronic wasting disease
We orally inoculated white-tailed deer with either single or multiple divided doses of prions of brain or saliva origin and monitored infection by serial longitudinal tissue biopsies spanning over two years. We report that oral exposure to as little as 300 nanograms (ng) of CWD-positive brain or to saliva containing seeding activity equivalent to 300 ng of CWD-positive brain, were sufficient to transmit CWD disease.
snip...
These studies suggest that the CWD minimum infectious dose approximates 100 to 300 ng CWD-positive brain (or saliva equivalent), and that CWD infection appears to conform more with a threshold than a cumulative dose dynamic.
Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) Singeltary Another Request for Update 2023
The infamous 1997 mad cow feed ban i.e. Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. However, this recommendation is guidance and not a requirement by law.
***>However, this recommendation is guidance and not a requirement by law.
WITH GREAT URGENCY, THE Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) MUST BE ENHANCED AND UPDATED TO INCLUDE CERVID, PIGS, AND SHEEP, SINCE RECENT SCIENCE AND TRANSMISSION STUDIES ALL, INCLUDING CATTLE, HAVE SHOWN ORAL TSE PrP TRANSMISSIONS BETWEEN THE SPECIES, AND THIS SHOULD BE DONE WITH THE UTMOST URGENCY, REASONS AS FOLLOW.
First off I will start with a single BSE feed breach 10 years after 1997 partial ban. If you got to the archived link, all the way down to bottom…THE NEXT YEAR I RECALL ONE WITH 10,000,000+ banned products recall…see this records at the bottom…terry
REASON The feed was manufactured from materials that may have been contaminated with mammalian protein.
VOLUME OF PRODUCT IN COMMERCE 27,694,240 lbs DISTRIBUTION MI
snip..... end
***>However, this recommendation is guidance and not a requirement by law.
THIS MUST CHANGE ASAP!
“For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. However, this recommendation is guidance and not a requirement by law.”…
Snip…please see my full submission with reference materials…
Monday, November 13, 2023
Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) Singeltary Another Request for Update 2023
FRIDAY, JULY 07, 2023
***> TME, 589.2000 (21 C.F.R. 589.2000), atypical L-BSE, who’s testing MINK for TSE?
Experimental transmission of the chronic wasting disease agent to swine after oral or intracranial inoculation
Running Title: The chronic wasting disease agent transmits to swine
S. Jo Moore1,2 , M. Heather West Greenlee3 , Naveen Kondru3 , Sireesha Manne3 , Jodi D. Smith1,# , Robert A. Kunkle1 , Anumantha Kanthasamy3 , Justin J. Greenlee1*
Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, Iowa, United States of America
Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America
Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, Iowa, United States of America
Current Address: Department of Veterinary Pathology, Iowa State University College of Veterinary Medicine, Ames, Iowa, United States of America * Corresponding author Email: justin.greenlee@ars.usda.gov
JVI Accepted Manuscript Posted Online 12 July 2017 J. Virol. doi:10.1128/JVI.00926-17
This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.
on July 27, 2017 by guest http://jvi.asm.org/ Downloaded from
Abstract
Chronic wasting disease (CWD) is a naturally occurring, fatal neurodegenerative disease of cervids. The potential for swine to serve as a host for the agent of chronic wasting disease is unknown. The purpose of this study was to investigate the susceptibility of swine to the CWD agent following experimental oral or intracranial inoculation . Crossbred piglets were assigned to one of three groups: intracranially inoculated (n=20), orally inoculated (n=19), or non -inoculated (n=9). At approximately the age at which commercial pigs reach market weight, half of the pigs in each group were culled (‘market weight’ groups). The remaining pigs (‘aged’ groups) were allowed to incubate for up to 73 months post inoculation (MPI ). Tissues collected at necropsy were examined for disease -associated prion protein (PrPSc) by western blotting (WB), antigen -capture immunoassay (EIA), immunohistochemistry (IHC) and in vitro real -time quaking induced conversion (RT -QuIC). Brain samples from selected pigs were also bioassayed in mice expressing porcine prion protein. Four intracranially inoculated aged pigs and one orally inoculated aged pig were positive by EIA, IHC and/or WB. Using RT -QuIC, PrPSc was detected in lymphoid and/or brain tissue from one or more pigs in each inoculated group. Bioassay was positive in 4 out of 5 pigs assayed.
This study demonstrates that pigs can support low-level amplification of CWD prions, although the species barrier to CWD infection is relatively high. However, detection of infectivity in orally inoculated pigs using mouse bioassay raises the possibility that naturally exposed pigs could act as a reservoir of CWD infectivity.
Discussion
snip...
In the case of feral pigs, exposure to the agent of CWD through scavenging of CWD-affected cervid carcasses or through consumption of prion contaminated plants or soil could allow feral pigs to serve as reservoirs of CWD infectivity. The range and numbers of feral pigs is predicted to continue to increase due to the ability of pigs to adapt to many climates, reproduce year-round, and survive on a varied diet (55 ). The range of CWD-affected cervids also continues to spread, increasing the likelihood of overlap of ranges of feral pigs and CWD -affected environments.
We demonstrate here that PrPSc accumulates in lymphoid tissues from pigs inoculated intracranially or orally with the CWD agent, and can be detected as early as 6 months after inoculation. Clinical disease suggestive of prion disease developed only in a single pig after a long (64 months) incubation period. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease. However, the low amounts of PrPSc detected in the study pigs combined with the low attack rates in Tg002 mice suggest that there is a relatively strong species barrier to CWD prions in pigs.
cwd scrapie pigs oral routes
***> However, at 51 months of incubation or greater, 5 animals were positive by one or more diagnostic methods. Furthermore, positive bioassay results were obtained from all inoculated groups (oral and intracranial; market weight and end of study) suggesting that swine are potential hosts for the agent of scrapie. <***
>*** Although the current U.S. feed ban is based on keeping tissues from TSE infected cattle from contaminating animal feed, swine rations in the U.S. could contain animal derived components including materials from scrapie infected sheep and goats. These results indicating the susceptibility of pigs to sheep scrapie, coupled with the limitations of the current feed ban, indicates that a revision of the feed ban may be necessary to protect swine production and potentially human health. <***
***> Results: PrPSc was not detected by EIA and IHC in any RPLNs. All tonsils and MLNs were negative by IHC, though the MLN from one pig in the oral <6 month group was positive by EIA. PrPSc was detected by QuIC in at least one of the lymphoid tissues examined in 5/6 pigs in the intracranial <6 months group, 6/7 intracranial >6 months group, 5/6 pigs in the oral <6 months group, and 4/6 oral >6 months group. Overall, the MLN was positive in 14/19 (74%) of samples examined, the RPLN in 8/18 (44%), and the tonsil in 10/25 (40%).
***> Conclusions: This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge. CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease. Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains.
***> Conclusions: This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge. CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease. Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains.
***> CONFIDENTIAL
EXPERIMENTAL PORCINE SPONGIFORM ENCEPHALOPATHY
LINE TO TAKE
3. If questions on pharmaceuticals are raised at the Press conference, the suggested line to take is as follows:-
"There are no medicinal products licensed for use on the market which make use of UK-derived porcine tissues with which any hypothetical “high risk" ‘might be associated. The results of the recent experimental work at the CSM will be carefully examined by the CSM‘s Working Group on spongiform encephalopathy at its next meeting.
DO Hagger RM 1533 MT Ext 3201
While this clearly is a cause for concern we should not jump to the conclusion that this means that pigs will necessarily be infected by bone and meat meal fed by the oral route as is the case with cattle. ...
we cannot rule out the possibility that unrecognised subclinical spongiform encephalopathy could be present in British pigs though there is no evidence for this: only with parenteral/implantable pharmaceuticals/devices is the theoretical risk to humans of sufficient concern to consider any action.
May I, at the outset, reiterate that we should avoid dissemination of papers relating to this experimental finding to prevent premature release of the information. ...
3. It is particularly important that this information is not passed outside the Department, until Ministers have decided how they wish it to be handled. ...
But it would be easier for us if pharmaceuticals/devices are not directly mentioned at all. ...
Our records show that while some use is made of porcine materials in medicinal products, the only products which would appear to be in a hypothetically ''higher risk'' area are the adrenocorticotrophic hormone for which the source material comes from outside the United Kingdom, namely America China Sweden France and Germany. The products are manufactured by Ferring and Armour. A further product, ''Zenoderm Corium implant'' manufactured by Ethicon, makes use of porcine skin - which is not considered to be a ''high risk'' tissue, but one of its uses is described in the data sheet as ''in dural replacement''. This product is sourced from the United Kingdom.....
***> Singeltary Hacks in to USDA 50 State Emergency BSE Conference Call <***
BSE--U.S. 50 STATE CONFERENCE CALL Jan. 9, 2001
Date: Tue, 9 Jan 2001 16:49:00 -0800
From: "Terry S. Singeltary Sr."
Reply-To: Bovine Spongiform Encephalopathy
To: BSE-L@uni-karlsruhe.de
2023
OIE Conclusions on transmissibility of atypical BSE among cattle
Given that cattle have been successfully infected by the oral route, at least for L-BSE, it is reasonable to conclude that atypical BSE is potentially capable of being recycled in a cattle population if cattle are exposed to contaminated feed. In addition, based on reports of atypical BSE from several countries that have not had C-BSE, it appears likely that atypical BSE would arise as a spontaneous disease in any country, albeit at a very low incidence in old cattle. In the presence of livestock industry practices that would allow it to be recycled in the cattle feed chain, it is likely that some level of exposure and transmission may occur. As a result, since atypical BSE can be reasonably considered to pose a potential background level of risk for any country with cattle, the recycling of both classical and atypical strains in the cattle and broader ruminant populations should be avoided.
Annex 7 (contd) AHG on BSE risk assessment and surveillance/March 2019
34 Scientific Commission/September 2019
3. Atypical BSE
The Group discussed and endorsed with minor revisions an overview of relevant literature on the risk of atypical BSE being recycled in a cattle population and its zoonotic potential that had been prepared ahead of the meeting by one expert from the Group. This overview is provided as Appendix IV and its main conclusions are outlined below. With regard to the risk of recycling of atypical BSE, recently published research confirmed that the L-type BSE prion (a type of atypical BSE prion) may be orally transmitted to calves1 . In light of this evidence, and the likelihood that atypical BSE could arise as a spontaneous disease in any country, albeit at a very low incidence, the Group was of the opinion that it would be reasonable to conclude that atypical BSE is potentially capable of being recycled in a cattle population if cattle were to be exposed to contaminated feed. Therefore, the recycling of atypical strains in cattle and broader ruminant populations should be avoided.
4. Definitions of meat-and-bone meal (MBM) and greaves
Title: Transmission of atypical BSE: a possible origin of Classical BSE in cattle
Authors: Sandor Dudas1, Samuel James Sharpe1, Kristina Santiago-Mateo1, Stefanie Czub1, Waqas Tahir1,2, *
Affiliation: 1National and WOAH reference Laboratory for Bovine Spongiform Encephalopathy, Canadian Food inspection Agency, Lethbridge Laboratory, Lethbridge, Canada. 2Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada.
*Corresponding and Presenting Author: waqas.tahir@inspection.gc.ca
Background: Bovine spongiform encephalopathy (BSE) is a fatal neurodegenerative disease of cattle and is categorized into classical and atypical forms. Classical BSE (CBSE) is linked to the consumption of BSE contaminated feed whereas atypical BSE is considered to be spontaneous in origin. The potential for oral transmission of atypical BSE is yet to be clearly defined.
Aims: To assess the oral transmissibility of atypical BSE (H and L type) in cattle. Should transmission be successful, determine the biochemical characteristics and distribution of PrPSc in the challenge cattle.
Material and Methods: For oral transmission, calves were fed with 100 g of either H (n=3) or L BSE (n=3) positive brain material. Two years post challenge, 1 calf from each of the H and L BSE challenge groups exhibited behavioural signs and were euthanized. Various brain regions of both animals were tested by traditional and novel prion detection methods with inconclusive results. To detect infectivity, brain homogenates from these oral challenge animals (P1) were injected intra-cranially (IC) into steer calves. Upon clinical signs of BSE, 3/4 of IC challenged steer calves were euthanized and tested for PrPSc with ELISA, immunohistochemistry and immunoblot.
Results: After 6 years of incubation, 3/4 animals (2/2 steers IC challenged with brain from P1 L-BSE oral challenge and 1/2 steer IC challenged with brain from P1 H-BSE oral challenge) developed clinical disease. Analysis of these animals revealed high levels of PrPSc in their brains, having biochemical properties similar to that of PrPSc in C-BSE.
Conclusion: These results demonstrate the oral transmission potential of atypical BSE in cattle. Surprisingly, regardless of which atypical type of BSE was used for P1 oral challenge, PrPSc in the P2 animals acquired biochemical characteristics similar to that of PrPSc in C-BSE, suggesting atypical BSE as a possible origin of C-BSE in UK.
Presentation Type: Oral Presentation
Funded by: CFIA, Health Canada, Alberta Livestock and Meat Agency, Alberta Prion Research Institute
Grant Number: ALMA/APRI: 201400006, HC 414250
Title: Transmission of atypical BSE: a possible origin of Classical BSE in cattle
Authors: Sandor Dudas1, Samuel James Sharpe1, Kristina Santiago-Mateo1, Stefanie Czub1, Waqas Tahir1,2, * Affiliation: 1National and WOAH reference Laboratory for Bovine Spongiform Encephalopathy, Canadian Food inspection Agency, Lethbridge Laboratory, Lethbridge, Canada. 2Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada. *Corresponding and Presenting Author: waqas.tahir@inspection.gc.ca
Background: Bovine spongiform encephalopathy (BSE) is a fatal neurodegenerative disease of cattle and is categorized into classical and atypical forms. Classical BSE (CBSE) is linked to the consumption of BSE contaminated feed whereas atypical BSE is considered to be spontaneous in origin. The potential for oral transmission of atypical BSE is yet to be clearly defined.
Aims: To assess the oral transmissibility of atypical BSE (H and L type) in cattle. Should transmission be successful, determine the biochemical characteristics and distribution of PrPSc in the challenge cattle.
Material and Methods: For oral transmission, calves were fed with 100 g of either H (n=3) or L BSE (n=3) positive brain material. Two years post challenge, 1 calf from each of the H and L BSE challenge groups exhibited behavioural signs and were euthanized. Various brain regions of both animals were tested by traditional and novel prion detection methods with inconclusive results. To detect infectivity, brain homogenates from these oral challenge animals (P1) were injected intra-cranially (IC) into steer calves. Upon clinical signs of BSE, 3/4 of IC challenged steer calves were euthanized and tested for PrPSc with ELISA, immunohistochemistry and immunoblot.
Results: After 6 years of incubation, 3/4 animals (2/2 steers IC challenged with brain from P1 L-BSE oral challenge and 1/2 steer IC challenged with brain from P1 H-BSE oral challenge) developed clinical disease. Analysis of these animals revealed high levels of PrPSc in their brains, having biochemical properties similar to that of PrPSc in C-BSE.
Conclusion: These results demonstrate the oral transmission potential of atypical BSE in cattle. Surprisingly, regardless of which atypical type of BSE was used for P1 oral challenge, PrPSc in the P2 animals acquired biochemical characteristics similar to that of PrPSc in C-BSE, suggesting atypical BSE as a possible origin of C-BSE in UK.
Presentation Type: Oral Presentation Funded by: CFIA, Health Canada, Alberta Livestock and Meat Agency, Alberta Prion Research Institute
Grant Number: ALMA/APRI: 201400006, HC 414250
Acknowledgement: TSE unit NCAD, Lethbridge (Jianmin Yang, Sarah Bogart, Rachana Muley, Yuanmu Fang, Keri Colwell, Renee Anderson, John Gray, Rakhi Katoch) (CFIA, Canada), Dr. Catherine Graham (NSDA, Canada), Dr. Michel Levy (UCVM, Canada), Dr. Martin Groschup (FLI, Germany), Dr. Christine Fast (FLI, Germany), Dr. Bob Hills (Health Canada, Canada) Theme: Animal prion diseases
"After 6 years of incubation, 3/4 animals (2/2 steers IC challenged with brain from P1 L-BSE oral challenge and 1/2 steer IC challenged with brain from P1 H-BSE oral challenge) developed clinical disease. Analysis of these animals revealed high levels of PrPSc in their brains, having biochemical properties similar to that of PrPSc in C-BSE. "
=====end
PRION 2023 CONTINUED;
Molecular phenotype shift after passage of low-type bovine spongiform encephalopathy (L-BSE).
Zoe J. Lambert, M. Heather West Greenlee, Jifeng Bian, Justin J. Greenlee Ames, USA
Aims: The purpose of this study is to compare the molecular phenotypes of L-BSE in wild type cattle and cattle with the E211K polymorphism to samples of other cattle TSEs, such as classical BSE (C-BSE), hightype BSE (H-BSE), and transmissible mink encephalopathy (TME).
Materials and Methods: Two wild type cattle (EE211 PRNP) and one steer with the E211K polymorphism (EK211) were intracranially inoculated with 1 mL of brain homogenate that originated from a 2005 French L-BSE case. Multiple assays were used to compare and differentiate tissues, including enzyme immunoassay, western blot (Sha31, 12B2, SAF84), stability (Sha31), and immunohistochemistry (F99/97).
Results: Approximately 16.6 months post-inoculation, Steer 6 (EK211 L-BSE) developed neurologic signs, including agitation, difficulty eating accompanied by weight loss, head tremor, ataxia, and fasciculations in the forelimbs, and was necropsied. Enzyme immunoassays demonstrated misfolded prion protein in the brainstem (4.0 O.D) but not in peripheral tissues, such as the retropharyngeal lymph node and palatine tonsil. When compared by western blot, the molecular phenotype of the brainstem of Steer 6 (EK211 L-BSE) is higher than that of wildtype cattle inoculated with L-BSE, requiring careful differentiation from C-BSE. Ongoing mouse studies in bovinized mice (K211 and TgBov) will provide data to compare to all other BSE strains available, including L-BSE, C-BSE, H-BSE, E211K H-BSE, and TME.
Conclusions: Further study of L-BSE in EK211 cattle with a higher molecular phenotype in the brainstem may give more insight into the origin of C-BSE.
Funded by: This research was funded in its entirety by congressionally appropriated funds to the United States Department of Agriculture, Agricultural Research Service. The funders of the work did not influence study design, data collection and analysis, decision to publish, or preparation of the manuscript. This research was supported in part by an appointment to the Agricultural Research Service (ARS) Research Participation Program administered by the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA). ORISE is managed by ORAU under DOE contract number DE-SC0014664. All opinions expressed in this paper are the author’s and do not necessarily reflect the policies and views of USDA, ARS, DOE, or ORAU/ORISE.
Grant number: DOE contract number DE-SC0014664 Acknowledgements: NA Theme: Animal prion diseases
=====end
PRION 2023 CONTINUED;
The L-type BSE prion is much more virulent in primates and in humanized mice than is the classical BSE prion, which suggests the possibility of zoonotic risk associated with the L-type BSE prion
Consumption of L-BSE–contaminated feed may pose a risk for oral transmission of the disease agent to cattle.
Thus, it is imperative to maintain measures that prevent the entry of tissues from cattle possibly infected with the agent of L-BSE into the food chain.
Atypical L-type bovine spongiform encephalopathy (L-BSE) transmission to cynomolgus macaques, a non-human primate
Fumiko Ono 1, Naomi Tase, Asuka Kurosawa, Akio Hiyaoka, Atsushi Ohyama, Yukio Tezuka, Naomi Wada, Yuko Sato, Minoru Tobiume, Ken'ichi Hagiwara, Yoshio Yamakawa, Keiji Terao, Tetsutaro Sata
Affiliations expand
PMID: 21266763
Abstract
A low molecular weight type of atypical bovine spongiform encephalopathy (L-BSE) was transmitted to two cynomolgus macaques by intracerebral inoculation of a brain homogenate of cattle with atypical BSE detected in Japan. They developed neurological signs and symptoms at 19 or 20 months post-inoculation and were euthanized 6 months after the onset of total paralysis. Both the incubation period and duration of the disease were shorter than those for experimental transmission of classical BSE (C-BSE) into macaques. Although the clinical manifestations, such as tremor, myoclonic jerking, and paralysis, were similar to those induced upon C-BSE transmission, no premonitory symptoms, such as hyperekplexia and depression, were evident. Most of the abnormal prion protein (PrP(Sc)) was confined to the tissues of the central nervous system, as determined by immunohistochemistry and Western blotting. The PrP(Sc) glycoform that accumulated in the monkey brain showed a similar profile to that of L-BSE and consistent with that in the cattle brain used as the inoculant. PrP(Sc) staining in the cerebral cortex showed a diffuse synaptic pattern by immunohistochemistry, whereas it accumulated as fine and coarse granules and/or small plaques in the cerebellar cortex and brain stem. Severe spongiosis spread widely in the cerebral cortex, whereas florid plaques, a hallmark of variant Creutzfeldt-Jakob disease in humans, were observed in macaques inoculated with C-BSE but not in those inoculated with L-BSE.
see full text;
''H-TYPE BSE AGENT IS TRANSMISSIBLE BY THE ORONASAL ROUTE''
This study demonstrates that the H-type BSE agent is transmissible by the oronasal route. These results reinforce the need for ongoing surveillance for classical and atypical BSE to minimize the risk of potentially infectious tissues entering the animal or human food chains.
2023 PRION CONFERENCE
Comparing the Distribution of Ovine Classical Scrapie and Sporadic Creutzfeldt-Jakob Disease in Italy: Spatial and Temporal Associations (2002-2014)
Aim: This study aims to investigate potential spatial and temporal associations between Creutzfeldt-Jakob disease (CJD) in humans (2010-2014) and ovine classical scrapie (CS) (2002- 2006) in Italy, serving as a proxy for exposure.
Results: The analysis of data at the district level revealed no significant association. However, when considering aggregated regional data, all four models consistently indicated a statistically significant positive association, suggesting a higher incidence of the disease in humans as the regional incidence of sheep scrapie increased.
Conclusions: While the results are intriguing, it is important to acknowledge the inherent limitations of ecological studies. Nevertheless, these findings provide valuable evidence to formulate a hypothesis regarding the zoonotic potential of classical scrapie. Further investigations are necessary, employing specific designs such as analytical epidemiology studies, to test this hypothesis effectively.
=====
Transmission of the Chronic Wastng Disease agent from elk to cattle after oronasal exposure
Justin Greenlee, Jifeng Bian, Zoe Lambert, Alexis Frese, and Eric Cassmann
Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
Aims: The purpose of this study was to determine the susceptibility of cattle to chronic wasting disease agent from elk.
Materials and Methods: Initial studies were conducted in bovinized mice using inoculum derived from elk with various genotypes at codon 132 (MM, LM, LL). Based upon attack rates, inoculum (10% w/v brain homogenate) from an LM132 elk was selected for transmission studies in cattle. At approximately 2 weeks of age, one wild type steer (EE211) and one steer with the E211K polymorphism (EK211) were fed 1 mL of brain homogenate in a quart of milk replacer while another 1 mL was instilled intranasally. The cattle were examined daily for clinical signs for the duration of the experiment. One steer is still under observation at 71 months post-inoculation (mpi).
Results: Inoculum derived from MM132 elk resulted in similar attack rates and incubation periods in mice expressing wild type or K211 bovine PRNP, 35% at 531 days post inoculation (dpi) and 27% at 448 dpi, respectively. Inoculum from LM132 elk had a slightly higher attack ratesin mice: 45% (693 dpi) in wild type cattle PRNP and 33% (468) in K211 mice. Inoculum from LL132 elk resulted in the highest attack rate in wild type bovinized mice (53% at 625 dpi), but no K211 mice were affected at >700 days. At approximately 70 mpi, the EK211 genotype steer developed clinical signs suggestive of prion disease, depression, low head carriage, hypersalivation, and ataxia, and was necropsied. Enzyme immunoassay (IDEXX) was positive in brainstem (OD=4.00, but non-detect in retropharyngeal lymph nodes and palatine tonsil. Immunoreactivity was largely limited to the brainstem, midbrain, and cervical spinal cord with a pattern that was primarily glia-associated.
Conclusions: Cattle with the E211K polymorphism are susceptible to the CWD agent after oronasal exposure of 0.2 g of infectious material.
Funded by: This research was funded in its entirety by congressionally appropriated funds to the United States Department of Agriculture, Agricultural Research Service. The funders of the work did not influence study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Grant number: NA
Acknowledgement: The authors wish to thank Quazetta Brown, Ami Frank, and Kevin Hassall for their technical contributions.
Strain characterization of chronic wasting disease in bovine-PrP transgenic mice
Nuria Jerez-Garrido1, Sara Canoyra1, Natalia Fernández-Borges1, Alba Marín Moreno1, Sylvie L. Benestad2, Olivier Andreoletti3, Gordon Mitchell4, Aru Balachandran4, Juan María Torres1 and Juan Carlos Espinosa1.
1 Centro de Investigación en Sanidad Animal, CISA-INIA-CSIC, Madrid, Spain.
2 Norwegian Veterinary Institute, Ås, Norway.
3 UMR Institut National de la Recherche Agronomique (INRA)/École Nationale Vétérinaire de Toulouse (ENVT), Interactions Hôtes Agents Pathogènes, Toulouse, France.
4 Canadian Food Inspection Agency, Ottawa, Canada.
Aims: Chronic wasting disease (CWD) is an infectious prion disease that affects cervids. Various CWD prion strains have been identified in different cervid species from North America and Europe. The properties of the infectious prion strains are influenced by amino acid changes and polymorphisms in the PrP sequences of different cervid species. This study, aimed to assess the ability of a panel of CWD prion isolates from diverse cervid species from North America and Europe to infect bovine species, as well as to investigate the properties of the prion strains following the adaptation to the bovine-PrP context.
Materials and Methods: BoPrP-Tg110 mice overexpressing the bovine-PrP sequence were inoculated by intracranial route with a panel of CWD prion isolates from both North America (two white-tailed deer and two elk) and Europe (one reindeer, one moose and one red deer).
Results: Our results show distinct behaviours in the transmission of the CWD isolates to the BoPrP-Tg110 mouse model. Some of these isolates did not transmit even after the second passage. Those able to transmit displayed differences in terms of attack rate, survival times, biochemical properties of brain PrPres, and histopathology.
Conclusions: Altogether, these results exhibit the diversity of CWD strains present in the panel of CWD isolates and the ability of at least some CWD isolates to infect bovine species.
Cattle being one of the most important farming species, this ability represents a potential threat to both animal and human health, and consequently deserves further study.
Funded by: MCIN/AEI /10.13039/501100011033 and by European Union Next Generation EU/PRTR
Grant number: PCI2020-120680-2 ICRAD
Detection of classical BSE prions in asymptomatic cows after inoculation with atypical/Nor98 scrapie
Marina Betancor1, Belén Marín1, Alicia Otero1#, Carlos Hedman1, Antonio Romero2, Tomás Barrio3, Eloisa Sevilla1, Jean Yves Douet3, Alvina Huor3, Juan José Badiola1, Olivier Andréoletti3, Rosa Bolea1.
1Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Instituto Agroalimentario de Aragón - IA2, 50013, Zaragoza, Spain.
2 Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, 50013, Zaragoza, Spain
3 UMR École Nationale Vétérinaire de Toulouse (ENVT) - Institut National pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) - 1225 Interactions Hôtes Agents Pathogènes (IHAP), 31300 Toulouse, France.
Aims: The emergence of bovine spongiform encephalopathy (BSE) prions from atypical scrapie has been recently proved in rodent and swine models. This study aimed to assess whether the inoculation of atypical scrapie could induce BSE-like disease in cattle.
Materials and Methods: Four calves were intracerebrally challenged with atypical scrapie. Animals were euthanized without clinical signs of prion disease between 7.2 and 11.3 years post-inoculation and tested for the accumulation of prions by conventional techniques and protein misfolding cyclic amplification (PMCA).
Results: None of the bovines showed signs compatible with prion disease. In addition, all tested negative for PrPSc accumulation by immunohistochemistry and western blotting. However, an emergence of BSE-like prions was detected during in vitro propagation of brain samples from the inoculated animals.
Conclusions: These findings suggest that atypical scrapie may represent a potential source of BSE infection in cattle.
Funded by: This work was supported financially by the following Spanish and European Interreg grants: Ministerio de Ciencia, Innovación y Universidades (Spanish Government), cofunded by Agencia Estatal de Investigación and the European Union and POCTEFA, which was 65% co-financed by the European Regional Development Fund (ERDF) through the Interreg V-A Spain-France-Andorra program (POCTEFA 2014– 2020).
Grant number: n° PID2021-125398OB-I00, EFA148/16 REDPRION
Acknowledgement: The authors would like to thank Sandra Felices and Daniel Romanos for their excellent technical assistance. Authors would also like to acknowledge the use of Servicio General de Apoyo a la Investigación-SAI, Universidad de Zaragoza
Experimental Oronasal Inoculation of the Chronic Wasting Disease Agent into White Tailed Deer
Author list: Sarah Zurbuchena,b , S. Jo Moorea,b , Jifeng Biana , Eric D. Cassmanna , and Justin J. Greenleea .
a. Virus and Prion Research Unit, National Animal Disease Center, ARS, United States Department of Agriculture, Ames, IA, US
b. Oak Ridge Institute for Science and Education (ORISE), U.S. Department of Energy, Oak Ridge, TN, United States
Aims: The purpose of this experiment was to determine whether white-tailed deer (WTD) are susceptible to inoculation of chronic wasting disease (CWD) via oronasal exposure.
Materials and methods: Six male, neutered WTD were oronasally inoculated with brainstem material (10% w/v) from a CWD-positive wild-type WTD. The genotypes of five inoculated deer were Q95/G96 (wild-type). One inoculated deer was homozygous S at codon 96 (96SS). Cervidized (Tg12; M132 elk PrP) mice were inoculated with 1% w/v brainstem homogenate from either a 96GG WTD (n=10) or the 96SS WTD (n=10).
Results: All deer developed characteristic clinical signs of CWD including weight loss, regurgitation, and ataxia. The 96SS individual had a prolonged disease course and incubation period compared to the other deer. Western blots of the brainstem on all deer yielded similar molecular profiles. All deer had widespread lymphoid distribution of PrPCWD and neuropathologic lesions associated with transmissible spongiform encephalopathies. Both groups of mice had a 100% attack rate and developed clinical signs, including loss of body condition, ataxia, and loss of righting reflex. Mice inoculated with material from the 96SS deer had a significantly shorter incubation period than mice inoculated with material from 96GG deer (Welch two sample T-test, P<0.05). Serial dilutions of each inocula suggests that differences in incubation period were not due to a greater concentration of PrPCWD in the 96SS inoculum. Molecular profiles from western blot of brain homogenates from mice appeared similar regardless of inoculum and appear similar to those of deer used for inoculum.
Conclusions: This study characterizes the lesions and clinical course of CWD in WTD inoculated in a similar manner to natural conditions. It supports previous findings that 96SS deer have a prolonged disease course. Further, it describes a first pass of inoculum from a 96SS deer in cervidized mice which shortened the incubation period.
Funded by: This research was funded in its entirety by congressionally appropriated funds to the United States Department of Agriculture, Agricultural Research Service. The funders of the work did not influence study design, data collection, analysis, decision to publish, or preparation of the manuscript.
Acknowledgement: We thank Ami Frank and Kevin Hassall for their technical contributions to this project.
Transmission of Idiopathic human prion disease CJD MM1 to small ruminant mouse models (Tg338 and Tg501).
Results: No evidence of transmission was found on a first passage in Tg338 nor Tg501ovinized mice, but on second passage, 4/10 Tg338 mice succumbed to CJDMM1 (40% attack rate after 645 dpi) and 1/12 Tg501 mice (519dpi, 10 still alive). The remaining 2nd passages are still ongoing. Conclusions: In this poster, the neuropathological features of the resulting strain are discussed.
https://prion2023.org/wp-content/uploads/2023/10/Meeting-book-final-version2.pdf
Transmission of scrapie prions to primate after an extended silent incubation period
*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS.
*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated.
*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains.
***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice.
***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion.
***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.
***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***
Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.
O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations
*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period,
***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014),
***is the third potentially zoonotic PD (with BSE and L-type BSE),
***thus questioning the origin of human sporadic cases.
==============
PRION 2015 CONFERENCE
PRION 2016 TOKYO
Saturday, April 23, 2016
SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016
Prion. 10:S15-S21. 2016 ISSN: 1933-6896 1933-690X
WS-01: Prion diseases in animals and zoonotic potential
Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion.
These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.
Tuesday, December 16, 2014
Evidence for zoonotic potential of ovine scrapie prions
Hervé Cassard,1, n1 Juan-Maria Torres,2, n1 Caroline Lacroux,1, Jean-Yves Douet,1, Sylvie L. Benestad,3, Frédéric Lantier,4, Séverine Lugan,1, Isabelle Lantier,4, Pierrette Costes,1, Naima Aron,1, Fabienne Reine,5, Laetitia Herzog,5, Juan-Carlos Espinosa,2, Vincent Beringue5, & Olivier Andréoletti1, Affiliations Contributions Corresponding author Journal name: Nature Communications
Volume: 5, Article number: 5821 DOI: doi:10.1038/ncomms6821 Received 07 August 2014 Accepted 10 November 2014 Published 16 December 2014
Abstract
Although Bovine Spongiform Encephalopathy (BSE) is the cause of variant Creutzfeldt Jakob disease (vCJD) in humans, the zoonotic potential of scrapie prions remains unknown. Mice genetically engineered to overexpress the humanprion protein (tgHu) have emerged as highly relevant models for gauging the capacity of prions to transmit to humans. These models can propagate human prions without any apparent transmission barrier and have been used used to confirm the zoonotic ability of BSE. Here we show that a panel of sheep scrapie prions transmit to several tgHu mice models with an efficiency comparable to that of cattle BSE.
***The serial transmission of different scrapie isolates in these mice led to the propagation of prions that are phenotypically identical to those causing sporadic CJD (sCJD) in humans.
***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.
Subject terms: Biological sciences• Medical research At a glance
why do we not want to do TSE transmission studies on chimpanzees $ 5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man. I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.
snip... R. BRADLEY
1: J Infect Dis 1980 Aug;142(2):205-8
Oral transmission of kuru, Creutzfeldt-Jakob disease, and scrapie to nonhuman primates
Gibbs CJ Jr, Amyx HL, Bacote A, Masters CL, Gajdusek DC.
Kuru and Creutzfeldt-Jakob disease of humans and scrapie disease of sheep and goats were transmitted to squirrel monkeys (Saimiri sciureus) that were exposed to the infectious agents only by their nonforced consumption of known infectious tissues. The asymptomatic incubation period in the one monkey exposed to the virus of kuru was 36 months; that in the two monkeys exposed to the virus of Creutzfeldt-Jakob disease was 23 and 27 months, respectively; and that in the two monkeys exposed to the virus of scrapie was 25 and 32 months, respectively. Careful physical examination of the buccal cavities of all of the monkeys failed to reveal signs or oral lesions. One additional monkey similarly exposed to kuru has remained asymptomatic during the 39 months that it has been under observation.
snip...
The successful transmission of kuru, Creutzfeldt-Jakob disease, and scrapie by natural feeding to squirrel monkeys that we have reported provides further grounds for concern that scrapie-infected meat may occasionally give rise in humans to Creutzfeldt-Jakob disease. PMID: 6997404
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=6997404&dopt=Abstract
Recently the question has again been brought up as to whether scrapie is transmissible to man. This has followed reports that the disease has been transmitted to primates. One particularly lurid speculation (Gajdusek 1977) conjectures that the agents of scrapie, kuru, Creutzfeldt-Jakob disease and transmissible encephalopathy of mink are varieties of a single "virus". The U.S. Department of Agriculture concluded that it could "no longer justify or permit scrapie-blood line and scrapie-exposed sheep and goats to be processed for human or animal food at slaughter or rendering plants" (ARC 84/77)" The problem is emphasised by the finding that some strains of scrapie produce lesions identical to the once which characterise the human dementias" Whether true or not. the hypothesis that these agents might be transmissible to man raises two considerations. First, the safety of laboratory personnel requires prompt attention. Second, action such as the "scorched meat" policy of USDA makes the solution of the acrapie problem urgent if the sheep industry is not to suffer grievously. snip... 76/10.12/4.6
Nature. 1972 Mar 10;236(5341):73-4.
Transmission of scrapie to the cynomolgus monkey (Macaca fascicularis)
Gibbs CJ Jr, Gajdusek DC. Nature 236, 73 - 74 (10 March 1972); doi:10.1038/236073a0
Transmission of Scrapie to the Cynomolgus Monkey (Macaca fascicularis)
C. J. GIBBS jun. & D. C. GAJDUSEK National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland
SCRAPIE has been transmitted to the cynomolgus, or crab-eating, monkey (Macaca fascicularis) with an incubation period of more than 5 yr from the time of intracerebral inoculation of scrapie-infected mouse brain. The animal developed a chronic central nervous system degeneration, with ataxia, tremor and myoclonus with associated severe scrapie-like pathology of intensive astroglial hypertrophy and proliferation, neuronal vacuolation and status spongiosus of grey matter. The strain of scrapie virus used was the eighth passage in Swiss mice (NIH) of a Compton strain of scrapie obtained as ninth intracerebral passage of the agent in goat brain, from Dr R. L. Chandler (ARC, Compton, Berkshire).
spontaneous/sporadic CJD in 85%+ of all human TSE, or spontaneous BSE in cattle, is a pipe dream, dreamed up by USDA/OIE et al, that has never been proven. let me repeat, NEVER BEEN PROVEN FOR ALL HUMAN OR ANIMAL TSE I.E. ATYPICAL BSE OR SPORADIC CJD! please see;
***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***
Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.
Detection of chronic wasting disease prions in processed meats
Rebeca Benavente1 , Francisca Bravo1,2, J. Hunter Reed3 , Mitch Lockwood3 , Glenn Telling4 , Rodrigo Morales1,2 1 Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA; 2 Universidad Bernardo O’Higgins. Santiago, Chile; 3 Texas Parks and Wildlife Department, Texas, USA. 4 Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
Aims: identify the presence of CWD prions in processed meats derived from elk.
Materials and Methods: In this study, we analyzed different processed meats derived from a CWD-positive (pre-clinical) free-ranging elk. Products tested included filets, sausages, boneless steaks, burgers, seasoned chili meats, and spiced meats. The presence of CWD-prions in these samples were assessed by PMCA using deer and elk substrates. The same analyses were performed in grilled and boiled meats to evaluate the resistance of the infectious agent to these procedures.
Results: Our results show positive prion detection in all the samples analyzed using deer and elk substrates. Surprisingly, cooked meats displayed increased seeding activities. This data suggests that CWD-prions are available to people even after meats are processed and cooked.
Conclusions: These results suggest CWD prions are accessible to humans through meats, even after processing and cooking. Considering the fact that these samples were collected from already processed specimens, the availability of CWD prions to humans is probably underestimated.
Funded by: NIH and USDA
Grant number: 1R01AI132695 and APP-20115 to RM
Acknowledgement: We would like to thank TPWD personnel for providing us with valuable samples
"Our results show positive prion detection in all the samples analyzed using deer and elk substrates. Surprisingly, cooked meats displayed increased seeding activities."
end...
PRION 2023 CONTINUED;
Fortuitous generation of a zoonotic cervid prion strain
Manuel Camacho, Xu Qi, Liuting Qing, Sydney Smith, Jieji Hu, Wanyun Tao, Ignazio Cali, Qingzhong Kong. Department of Pathology, Case Western Reserve University, Cleveland, USA
Aims: Whether CWD prions can infect humans remains unclear despite the very substantial scale and long history of human exposure of CWD in many states or provinces of USA and Canada. Multiple in vitro conversion experiments and in vivo animal studies indicate that the CWD-to-human transmission barrier is not unbreakable. A major long-term public health concern on CWD zoonosis is the emergence of highly zoonotic CWD strains. We aim to address the question of whether highly zoonotic CWD strains are possible.
Materials and Methods: We inoculated several sCJD brain samples into cervidized transgenic mice (Tg12), which were intended as negative controls for bioassays of brain tissues from sCJD cases who had potentially been exposed to CWD. Some of the Tg12 mice became infected and their brain tissues were further examined by Western blot as well as serial passages in humanized or cervidized mice.
Results: Passage of sCJDMM1 in transgenic mice expressing elk PrP (Tg12) resulted in a “cervidized” CJD strain that we termed CJDElkPrP. We observed 100% transmission of the original CJDElkPrP in transgenic mice expressing human PrP. We passaged CJDElkPrP two more times in the Tg12 mice. We found that such second and third passage CJDElkPrP prions retained 100% transmission rate in the humanized mice, despite that the natural elk CWD isolates and CJDElkPrP share the same elk PrP sequence. In contrast, we and others found zero or poor transmission of natural elk CWD isolates in humanized mice.
Conclusions: Our data indicate that highly zoonotic cervid prion strains are not only possible but also can retain zoonotic potential after serial passages in cervids, suggesting a very significant and serious long-term risk of CWD zoonosis given that the broad and continuing spread of CWD prions will provide fertile grounds for the emergence of zoonotic CWD strains over time.
Funded by: NIH Grant number: R01NS052319, R01NS088604, R01NS109532
Acknowledgement: We want to thank the National Prion Disease Pathology Surveillance Center and Drs. Allen Jenny and Katherine O'Rourke for providing the sCJD samples and the CWD samples used in this study, respectively
"Our data indicate that highly zoonotic cervid prion strains are not only possible but also can retain zoonotic potential after serial passages in cervids, suggesting a very significant and serious long-term risk of CWD zoonosis given that the broad and continuing spread of CWD prions will provide fertile grounds for the emergence of zoonotic CWD strains over time."
PRION 2023 CONTINUED;
A probable diagnostic marker for CWD infection in humans
Xu Qi, Liuting Qing, Manuel Camacho, Ignazio Cali, Qingzhong Kong. Department of Pathology, Case Western Reserve University, Cleveland, USA
Aims: Multiple in vitro CWD-seeded human PrP conversion experiments and some animal model studies indicate that the species barrier for CWD to human transmission can be overcome, but whether CWD prion can infect humans in real life remains controversial. The very limited understanding on the likely features of CWD infection in humans and the lack of a reliable diagnostic marker for identification of acquired human CWD cases contribute to this uncertainty. We aim to stablish such a reliable diagnostic marker for CWD infections in humans should they occur.
Materials and Methods: A couple of PrPSc-positive spleens were identified from humanized transgenic mice inoculated with either CWD or sCJDMM1. Prions in these spleens were compared by bioassays in cervidized or humanized transgenic mice. A couple of PrPSc-positive spleens from UK sCJDMM1 patients were also examined similarly as controls with no exposure to CWD.
Results: We have detected two prion-positive spleens in humanized transgenic mice inoculated with some CWD isolates. Such experimentally generated splenic “humanized” CWD prions (termed eHuCWDsp) appear indistinguishable from prions in the brain of sCJDMM1 patients on Western blot. We compared eHuCWDsp with prions in the spleen from humanized mice infected with sCJDMM1 (termed sCJDMM1sp) by bioassays in cervidized or humanized transgenic mice. Significantly, we found that eHuCWDsp can efficiently infect not only the humanized mice but also cervidized transgenic mice, and cervidized mice infected by eHuCWDsp produced PrPSc and brain pathology that are practically identical to those of CWD-infected cervidized mice. In contrast, sCJDMM1sp, similar to prions from sCJDMM1 patient brains, is poorly transmissible in the cervidized mice.
Conclusions: Our data demonstrate that high transmissibility with CWD features of splenic prions in cervidized transgenic mice is unique to acquired human CWD prions, and it may serve as a reliable marker to identify the first acquired human CWD cases.
Funded by: NIH Grant number: R01NS052319, R01NS088604, R01NS109532
Acknowledgement: We want to thank the National Prion Disease Pathology Surveillance Center and Drs. Allen Jenny and Katherine O'Rourke for providing the sCJD samples and the CWD samples used in this study, respectively.
=====end
PRION 2023 CONTINUED;
The detection and decontamination of chronic wasting disease prions during venison processing
Marissa S. Milstein1,2, Marc D. Schwabenlander1,2, Sarah C. Gresch1,2, Manci Li1,2, Stuart Lichtenberg1,2, Rachel Shoemaker1,2, Gage R. Rowden1,2, Jason C. Bartz2,3 , Tiffany M. Wolf2,4, Peter A. Larsen1,2 Presenting author: Tiffany M. Wolf 1 Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA 2 Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA 3 Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, Nebraska, USA 4 Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
Aims: There is a growing concern that chronic wasting disease (CWD) prions in venison pose a risk to human health. CWD prions accumulate in infected deer tissues that commonly enter the human food chain through meat processing and consumption. The United States (US) Food and Drug Administration and US Department of Agriculture now formally consider CWD-positive venison unfit for human and animal consumption. Yet, the degree to which prion contamination occurs during routine venison processing is unknown. Here, we use environmental surface swab methods to: a) experimentally test meat processing equipment (i.e., stainless steel knives and polyethylene cutting boards) before and after processing CWD-positive venison and b) test the efficacy of five different disinfectant types (i.e., Dawn dish soap, Virkon-S, Briotech, 10% bleach, and 40% bleach) to determine prion decontamination efficacy.
Materials and Methods: We used a real-time quaking-induced conversion (RT-QuIC) assay to determine CWD infection status of venison and to detect CWD prions in the swabs. We collected three swabs per surface and ran eight technical replicates on RT-QuIC.
Results: CWD prions were detected on all cutting boards (n= 3; replicates= 8/8, 8/8, 8/8 and knives (n= 3; replicates= 8/8, 8/8, 8/8) used in processing CWD-positive venison, but not on those used for CWD-negative venison. After processing CWD-positive venison, allowing the surfaces to dry, and washing the cutting board with Dawn dish soap, we detected CWD prions on the cutting board surface (n= 3; replicates= 8/8, 8/8, 8/8) but not on the knife (n= 3, replicates = 0/8, 0/8, 0/8). Similar patterns were observed with Briotech (cutting board: n= 3; replicates= 7/8, 1/8, 0/8; knife: n= 3; replicates = 0/8, 0/8, 0/8). We did not detect CWD prions on the knives or cutting boards after disinfecting with Virkon-S, 10% bleach, and 40% bleach.
Conclusions: These preliminary results suggest that Dawn dish soap and Briotech do not reliably decontaminate CWD prions from these surfaces. Our data suggest that Virkon-S and various bleach concentrations are more effective in reducing prion contamination of meat processing surfaces; however, surface type may also influence the ability of prions to adsorb to surfaces, preventing complete decontamination. Our results will directly inform best practices to prevent the introduction of CWD prions into the human food chain during venison processing.
Acknowledgement: Funding was provided by the Minnesota Environment and Natural Resources Trust Fund as recommended by the Legislative-Citizen Commission on Minnesota Resources (LCCMR), the Rapid Agriculture Response Fund (#95385/RR257), and the Michigan Department of Natural Resources.
Theme: Animal prion diseases
=====end
PRION 2023 CONTINUED;
Prion 2023 Detection of CWD prions in plants collected from white-tailed deer farms
Francisca Bravo Risi1,3, Paulina Soto1,3, Yumeng Huang1 , Tracy A. Nichols4 & Rodrigo Morales1,2* Affiliations: 1 Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St.,Houston, TX 77030, USA. 2 Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile. 3 Universidad Bernardo O’Higgins, Doctorado en Ciencias con Mención en Materiales Funcionales, General Gana 1702, Santiago, Chile. 4 Veterinary Services Cervid Health Program, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, Colorado,
USA
Chronic wasting disease (CWD) affects both farmed and free-ranging cervids. Transmission of CWD is thought to occur by direct animal-to-animal contact and by exposure to contaminated environmental fomites. CWD-prion seeding activity has been detected in natural and experimentally-contaminated environmental samples including mineral licks, water sources, dust, manmade surfaces, soils, and plants. Importantly, prion infectivity in some of these samples has been proven. However, whether CWD exposed plants carry prion levels relevant to sustain infectivity has not been tested.
The aim of this study is to explore if plants collected in a CWD contaminated facility are able to spread prion.
Materials and Methods: In this study, we optimized the detection of CWD-prions in plants using the protein misfolding cyclic amplification (PMCA). We compared NaPTA pretreatment and direct spiking of the sample into the PMCA reactions. After achieving technical optimizations, we screened multiple plant specimens collected from white-tailed deer breeding facilities displaying variable CWD prevalence. Plants from a site displaying the highest CWD prevalence were tested for infectivity in meadow voles, a co-existing animal species that feed from grass plants.
Results: Our results demonstrated that CWD-prion detection in plants was optimal when samples were pre-treated with a NaPTA-based protocol. Our screening results showed positive PMCA activity for specimens collected from the farm with the highest CWD prevalence. Although meadow voles were highly susceptible to CWD-prions by intra-cranial administration, consumption of contaminated grass did not induce prion infection in these rodents.
Conclusions: Pre-PMCA treatment with NaPTA increase the detection of CWD-prionsin vitro in plant specimens. Although the detection of CWD in naturally contaminated vegetation was possible, the amount of prion was apparently low. This was demonstrated by the lack of transmission to meadow voles exposed to these plants. These findings further contribute to understand how CWD prions interact with multiple environmental elements.
Funded by: NIH and USDA Grant number: 1R01AI132695 and AP20VSSPRS00C143
=====end
PRION 2023 CONTINUED;
Unforeseen decrease of full-length prion protein in macaques exposed to prion contaminated blood products
Emmanuel COMOY, Nina JAFFRE, Jérôme DELMOTTE, Jacqueline MIKOL, and Jean Philippe DESLYS Commissariat à l’Energie Atomique, DRF/IBFJ/SEPIA, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France.
Aims: The presence of prion infectivity in blood from patients affected by variant of Creutzfeldt-Jakob disease (v-CJD) questions the risk of its inter-human transmission through transfusion. We have previously described that several cynomolgus macaques experimentally exposed to prion-contaminated blood products developed c-BSE/v-CJD; however, after an exposure to low infectious doses, the vast majority of them developed an unexpected, fatal disease phenotype focused on spinal cord involvement which does not fulfill the classical diagnostic criteria of v-CJD, notably concerning the pathognomonic accumulation of abnormal prion protein. Here we aim to investigate the etiology and physiopathology of this original myelopathy.
Materials and Methods: CNS (brain and spinal cord) samples from myelopathic macaques were tested with different biochemical approaches in comparison to samples derived from either healthy animals or their counterparts exposed to different strains of prion diseases.
Results: Current conventional techniques failed to detect any accumulation of abnormal prion protein (PrPv-CJD) in the CNS of these myelopathic animals. Conversely, in their spinal cord we observed an alteration of their physiological cellular PrP pattern: PrP was not detectable under its full-length classical expression but mainly under its physiological terminal-truncated C1 fragment.
Conclusions: We here confirm the prion origin of this original syndrome, with a very specific biochemical signature linked to changes in PrP at the level of spinal cord lesions: contrary to what is classically described in prion diseases, host PrP is here altered in a form that is abnormally sensitive to degradation by cellular catabolism. This could provide the first experimental evidence of a link between loss of function of the cellular prion protein and the onset of disease. These observations open up new horizons in the field of prion diseases, which has hitherto been limited to pathologies associated with abnormal changes in cellular PrP towards highly structured conformations, with the possibility of unsuspected prion mechanisms/origins in certain neurodegenerative disorders.
Funded by: Financial support for the study was provided by the French National Research Agency (ANR).
Grant number: ANR-10-BLAN-133001 and BIOTECS2010-BloodSecur
Acknowledgement: We specially thank N. Lescoutra, A. Culeux, V. Durand, E. Correia, C. Durand and S. Jacquin for precious technical assistance
Transmission of prion infectivity from CWD-infected macaque tissues to rodent models demonstrates the zoonotic potential of chronic wasting disease
Samia Hannaoui1,2, Ginny Cheng1,2, Wiebke Wemheuer3, Walter Schulz-Schaeffer3, Sabine Gilch1,2, Hermann Schatzl1,2 1University of Calgary, Calgary, Canada. 2Calgary Prion Research Unit, Calgary, Canada. 3Institute of Neuropathology, Medical Faculty, Saarland University, Homburg/Saar, Germany
***> Further passage to cervidized mice revealed transmission with a 100% attack rate.
***> Our findings demonstrate that macaques, considered the best model for the zoonotic potential of prions, were infected upon CWD challenge, including the oral one.
****> The disease manifested as atypical in macaques and initial transgenic mouse transmissions, but with infectivity present at all times, as unveiled in the bank vole model with an unusual tissue tropism.
***> Epidemiologic surveillance of prion disease among cervid hunters and people likely to have consumed venison contaminated with chronic wasting disease
=====
Transmission of Cervid Prions to Humanized Mice Demonstrates the Zoonotic Potential of CWD
Samia Hannaouia, Irina Zemlyankinaa, Sheng Chun Changa, Maria Immaculata Arifina, Vincent Béringueb, Debbie McKenziec, Hermann M. Schatzla, and Sabine Gilcha
Results: Here, we provide the strongest evidence supporting the zoonotic potential of CWD prions, and their possible phenotype in humans. Inoculation of mice expressing human PrPCwith deer CWD isolates (strains Wisc-1 and 116AG) resulted in atypical clinical manifestations in > 75% of the mice, with myoclonus as leading clinical sign. Most of tg650brain homogenates were positive for seeding activity in RT-QuIC. Clinical disease and presentation was transmissible to tg650 mice and bank voles. Intriguingly, protease-resistant PrP in the brain of tg650 mice resembled that found in a familial human prion disease and was transmissible upon passage. Abnormal PrP aggregates upon infection with Wisc-1 were detectable in thalamus, hypothalamus, and midbrain/pons regions.
Unprecedented in human prion disease, feces of CWD-inoculated tg650 mice harbored prion seeding activity and infectious prions, as shown by inoculation of bank voles and tg650 with fecal homogenates.
Conclusions: This is the first evidence that CWD can infect humans and cause disease with a distinctive clinical presentation, signature, and tropism, which might be transmissible between humans while current diagnostic assays might fail to detect it. These findings have major implications for public health and CWD-management.
The finding that infectious PrPSc was shed in fecal material of CWD-infected humanized mice and induced clinical disease, different tropism, and typical three banding pattern-PrPres in bank voles that is transmissible upon second passage is highly concerning for public health. The fact that this biochemical signature in bank voles resembles that of the Wisc-1 original deer isolate and is different from that of bvWisc-1, in the migration profile and the glyco-form-ratio, is valid evidence that these results are not a product of contamination in our study. If CWD in humans is found to be contagious and transmissible among humans, as it is in cervids [57], the spread of the disease within humans might become endemic.
Transmission of cervid prions to humanized mice demonstrates the zoonotic potential of CWD
Acta Neuropathol 144, 767–784 (2022). https://doi.org/10.1007/s00401-022-02482-9
Published
22 August 2022
Transmission of cervid prions to humanized mice demonstrates the zoonotic potential of CWD
Samia Hannaoui1 · Irina Zemlyankina1 · Sheng Chun Chang1 · Maria Immaculata Arifn1 · Vincent Béringue2 · Debbie McKenzie3 · Hermann M. Schatzl1 · Sabine Gilch1
Accepted: 7 August 2022
HIGHLIGHTS OF THIS STUDY
Our results suggest that CWD might infect humans, although the transmission barrier is likely higher compared to zoonotic transmission of cattle prions. Notably, our data suggest a different clinical presentation, prion signature, and tissue tropism, which causes challenges for detection by current diagnostic assays. Furthermore, the presence of infectious prions in feces is concerning because if this occurs in humans, it is a source for human-to-human transmission. These findings have strong implications for public health and CWD management.
Our results are the first evidence of a zoonotic risk of CWD when using one of the most common CWD strains, Wisc-1/CWD1 for infection. We demonstrated in a human transgenic mouse model that the species barrier for transmission of CWD to humans is not absolute.
Our findings strongly suggest that CWD should be regarded as an actual public health risk. Here, we use humanized mice to show that CWD prions can cross the species barrier to humans, and remarkably, infectious prions can be excreted in feces.
suggesting a potential for human-to-human transmission and a real iatrogenic risk that might be unrecognizable.
If CWD in humans is found to be contagious and transmissible among humans, as it is in cervids [57], the spread of the disease within humans might become endemic.
Supplementary Information The online version contains supplementary material available at
snip...see full text;
Detection of chronic wasting disease prions in processed meats
Rebeca Benavente1 , Francisca Bravo1,2, J. Hunter Reed3 , Mitch Lockwood3 , Glenn Telling4 , Rodrigo Morales1,2 1 Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA; 2 Universidad Bernardo O’Higgins. Santiago, Chile; 3 Texas Parks and Wildlife Department, Texas, USA. 4 Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
Aims: identify the presence of CWD prions in processed meats derived from elk.
Materials and Methods: In this study, we analyzed different processed meats derived from a CWD-positive (pre-clinical) free-ranging elk. Products tested included filets, sausages, boneless steaks, burgers, seasoned chili meats, and spiced meats. The presence of CWD-prions in these samples were assessed by PMCA using deer and elk substrates. The same analyses were performed in grilled and boiled meats to evaluate the resistance of the infectious agent to these procedures.
Results: Our results show positive prion detection in all the samples analyzed using deer and elk substrates. Surprisingly, cooked meats displayed increased seeding activities. This data suggests that CWD-prions are available to people even after meats are processed and cooked.
Conclusions: These results suggest CWD prions are accessible to humans through meats, even after processing and cooking. Considering the fact that these samples were collected from already processed specimens, the availability of CWD prions to humans is probably underestimated.
Funded by: NIH and USDA
Grant number: 1R01AI132695 and APP-20115 to RM
Acknowledgement: We would like to thank TPWD personnel for providing us with valuable samples
"Our results show positive prion detection in all the samples analyzed using deer and elk substrates. Surprisingly, cooked meats displayed increased seeding activities."
end...
PRION 2023 CONTINUED;
''Currently, there is scientific evidence to suggest that CWD has zoonotic potential; however, no confirmed cases of CWD have been found in humans.''
PART 2. TPWD CHAPTER 65. DIVISION 1. CWD
31 TAC §§65.82, 65.85, 65.88
The Texas Parks and Wildlife Commission in a duly noticed meeting on May 25, 2023 adopted amendments to 31 TAC §§65.82, 65.85, and §65.88, concerning Disease Detection and Response, without changes to the proposed text as published in the April 21, 2023, issue of the Texas Register (48 TexReg 2048). The rules will not be republished.
Currently, there is scientific evidence to suggest that CWD has zoonotic potential; however, no confirmed cases of CWD have been found in humans.
17 DETECTION OF CHRONIC WASTING DISEASE PRIONS IN PROCESSED MEATS.
Rebeca Benavente1, Francisca Bravo1,2, Paulina Soto1,2, J. Hunter Reed3, Mitch Lockwood3, Rodrigo Morales1,2
1Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, USA. 2Universidad Bernardo O’Higgins, Santiago, Chile. 3Texas Parks and Wildlife, Austin, USA
Abstract
The zoonotic potential of chronic wasting disease (CWD) remains unknown. Currently, there are no known natural cases of CWD transmission to humans but increasing evidence suggests that the host range of CWD is not confined only to cervid species. Alarmingly, recent experimental evidence suggests that certain CWD isolates can induce disease in non-human primates. While the CDC strongly recommends determining CWD status in animals prior to consumption, this practice is voluntary. Consequently, it is plausible that a proportion of the cervid meat entering the human food chain may be contaminated with CWD. Of additional concern is that traditional diagnostic techniques used to detect CWD have relatively low sensitivity and are only approved for use in tissues other than those typically ingested by humans. In this study, we analyzed different processed meats derived from a pre-clinical, CWD-positive free-ranging elk. Products tested included filets, sausages, boneless steaks, burgers, ham steaks, seasoned chili meats, and spiced meats. CWD-prion presence in these products were assessed by PMCA using deer and elk substrates. Our results show positive prion detection in all products. To confirm the resilience of CWD-prions to traditional cooking methods, we grilled and boiled the meat products and evaluated them for any remnant PMCA seeding activity. Results confirmed the presence of CWD-prions in these meat products suggesting that infectious particles may still be available to people even after cooking.
Our results strongly suggest ongoing human exposure to CWD-prions and raise significant concerns of zoonotic transmission through ingestion of CWD contaminated meat products.
***> Products tested included filets, sausages, boneless steaks, burgers, ham steaks, seasoned chili meats, and spiced meats.
***> CWD-prion presence in these products were assessed by PMCA using deer and elk substrates.
***> Our results show positive prion detection in all products.
***> Results confirmed the presence of CWD-prions in these meat products suggesting that infectious particles may still be available to people even after cooking.
***> Our results strongly suggest ongoing human exposure to CWD-prions and raise significant concerns of zoonotic transmission through ingestion of CWD contaminated meat products.
=====
9 Carrot plants as potential vectors for CWD transmission.
Paulina Soto1,2, Francisca Bravo-Risi1,2, Claudio Soto1, Rodrigo Morales1,2
1Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, USA. 2Universidad Bernardo O’Higgins, Santiago, Chile
***> We show that edible plant components can absorb prions from CWD-contaminated soils and transport them to their aerial parts.
***> Our results indicate that edible plants could participate as vectors of CWD transmission.
=====
Transmission of prion infectivity from CWD-infected macaque tissues to rodent models demonstrates the zoonotic potential of chronic wasting disease.
Samia Hannaoui1,2, Ginny Cheng1,2, Wiebke Wemheuer3, Walter Schulz-Schaeffer3, Sabine Gilch1,2, Hermann Schatzl1,2 1University of Calgary, Calgary, Canada. 2Calgary Prion Research Unit, Calgary, Canada. 3Institute of Neuropathology, Medical Faculty, Saarland University, Homburg/Saar, Germany
***> Further passage to cervidized mice revealed transmission with a 100% attack rate.
***> Our findings demonstrate that macaques, considered the best model for the zoonotic potential of prions, were infected upon CWD challenge, including the oral one.
****> The disease manifested as atypical in macaques and initial transgenic mouse transmissions, but with infectivity present at all times, as unveiled in the bank vole model with an unusual tissue tropism.
***> Epidemiologic surveillance of prion disease among cervid hunters and people likely to have consumed venison contaminated with chronic wasting disease
=====
TUESDAY, NOVEMBER 28, 2023
***> EFSA TSE Report 2022 First published 28 November 2023
The European Union summary report on surveillance for the presence of transmissible spongiform encephalopathies (TSE) in 2022
PLEASE NOTE, USDA ET AL ONLY TESTING <25k CATTLE FOR MAD COW DISEASE, woefully inadequate, yet USDA just documented a case Atypical L-Type BSE, the most virulent strain to date...
Monday, May 22, 2023
***> BSE TSE Prion MAD COW TESTING IN THE USA COMPARED TO OTHER COUNTRIES?
Wednesday, May 24, 2023
***> WAHIS, WOAH, OIE, United States of America Bovine spongiform encephalopathy Immediate notification
SATURDAY, MAY 20, 2023
***> Tennessee State Veterinarian Alerts Cattle Owners to Disease Detection Mad Cow atypical L-Type BSE
2 weeks before the announcement of this recent mad cow case in the USA, i submitted this to the APHIS et al;
***> APPRX. 2 weeks before the recent mad cow case was confirmed in the USA, in Tennessee, atypical L-Type BSE, I submitted this to the APHIS et al;
Document APHIS-2023-0027-0001 BSE Singeltary Comment Submission May 2, 2023
''said 'burden' cost, will be a heavy burden to bear, if we fail with Bovine Spongiform Encephalopathy BSE TSE Prion disease, that is why this information collection is so critical''...
WEDNESDAY, NOVEMBER 08, 2023
Ireland Atypical BSE confirmed November 3 2023
TUESDAY, NOVEMBER 14, 2023
Ireland Atypical BSE case, 3 progeny of case cow to be culled
SUNDAY, JULY 16, 2023
Switzerland Atypical BSE detected in a cow in the canton of St. Gallen
WAHIS, WOAH, OIE, REPORT Switzerland Bovine Spongiform Encephalopathy Atypical L-Type
Switzerland Bovine Spongiform Encephalopathy Atypical L-Type
Switzerland - Bovine spongiform encephalopathy - Immediate notification
Monday, March 20, 2023
WAHIS, WOAH, OIE, REPORT United Kingdom Bovine Spongiform Encephalopathy Atypical H-Type
BRAZIL BSE START DATE 2023/01/18
BRAZIL BSE CONFIRMATION DATE 2023/02/22
BRAZIL BSE END DATE 2023/03/03
SPAIN BSE START DATE 2023/01/21
SPAIN BSE CONFIRMATION DATE 2023/02/03
SPAIN BSE END DATE 2023/02/06
NETHERLANDS BSE START DATE 2023/02/01
NETHERLANDS BSE CONFIRMATION DATE 2023/02/01
NETHERLANDS BSE END DATE 2023/03/13
PLEASE NOTE, USDA ET AL ONLY TESTING <25k CATTLE FOR MAD COW DISEASE, woefully inadequate, yet USDA just documented a case Atypical L-Type BSE, the most virulent strain to date...
Monday, May 22, 2023
***> BSE TSE Prion MAD COW TESTING IN THE USA COMPARED TO OTHER COUNTRIES?
Wednesday, May 24, 2023
***> WAHIS, WOAH, OIE, United States of America Bovine spongiform encephalopathy Immediate notification
THURSDAY, NOVEMBER 9, 2023
EFSA Annual Report of the Scientific Network on BSE-TSE 2023
Annual Report of the Scientific Network on BSE-TSE 2023
European Food Safety Authority (EFSA
APPROVED: 25 October 2023
WEDNESDAY, NOVEMBER 01, 2023
TEXAS CHRONIC WASTING DISEASE RISES SUBSTANTIALLY TO 575 CONFIRMED CWD CASES TO DATE
FRIDAY, DECEMBER 08, 2023
TEXAS CWD TSE PRION DIRE CONSEQUENCES ARE HERE!
***> CHRONIC WASTING DISEASE CWD TSE PRION BY STATE UPDATE END OF YEAR 2023 <***
FRIDAY, JANUARY 20, 2023
***> EPIDEMIOLOGY OF SCRAPIE IN THE UNITED STATES
FRIDAY, NOVEMBER 25, 2022
***> USA National Scrapie Eradication Program (NSEP) 2021 to 2003 A Year by Year Review
WEDNESDAY, FEBRUARY 03, 2021
***> Scrapie TSE Prion United States of America a Review February 2021 Singeltary et al
Deep Throat to Singeltary BSE Mad Cow 2001 to 2023
I remember what “deep throat” told me about Scrapie back around 2001, I never forgot, and it seems it’s come to pass;
***> Confidential!!!!
***> As early as 1992-3 there had been long studies conducted on small pastures containing scrapie infected sheep at the sheep research station associated with the Neuropathogenesis Unit in Edinburgh, Scotland. Whether these are documented...I don't know. But personal recounts both heard and recorded in a daily journal indicate that leaving the pastures free and replacing the topsoil completely at least 2 feet of thickness each year for SEVEN years....and then when very clean (proven scrapie free) sheep were placed on these small pastures.... the new sheep also broke out with scrapie and passed it to offspring. I am not sure that TSE contaminated ground could ever be free of the agent!! A very frightening revelation!!!
---end personal email---end...tss
(I never knew who this person was, but got me into the U.S. BSE Emergency 50 State conference call back 2001, and we corresponded for years about BSE TSE Prion, have not heard from in over a decade, but they were on the inside looking out. You can believe this or not, but this was real, i don’t make this stuff up…plus my endeavors to get those 1 million cattle tested for BSE failed. There was an ENHANCED BSE SURVEILLANCE put forth after 2003, we pushed for it, but it was abruptly shut down after the atypical BSE cases were popping up…a bit of history for anyone interested…terry)
DEEP THROAT TO TSS 2000-2001 (take these old snips of emails with how ever many grains of salt you wish. ...tss)
The most frightening thing I have read all day is the report of Gambetti's finding of a new strain of sporadic cjd in young people...Dear God, what in the name of all that is holy is that!!! If the US has different strains of scrapie.....why???? than the UK...then would the same mechanisms that make different strains of scrapie here make different strains of BSE...if the patterns are different in sheep and mice for scrapie.....could not the BSE be different in the cattle, in the mink, in the humans.......I really think the slides or tissues and everything from these young people with the new strain of sporadic cjd should be put up to be analyzed by many, many experts in cjd........bse.....scrapie Scrape the damn slide and put it into mice.....wait.....chop up the mouse brain and and spinal cord........put into some more mice.....dammit amplify the thing and start the damned research.....This is NOT rocket science...we need to use what we know and get off our butts and move....the whining about how long everything takes.....well it takes a whole lot longer if you whine for a year and then start the research!!!
Not sure where I read this but it was a recent press release or something like that: I thought I would fall out of my chair when I read about how there was no worry about infectivity from a histopath slide or tissues because they are preserved in formic acid, or formalin or formaldehyde.....for God's sake........ Ask any pathologist in the UK what the brain tissues in the formalin looks like after a year.......it is a big fat sponge...the agent continues to eat the brain ......you can't make slides anymore because the agent has never stopped........and the old slides that are stained with Hemolysin and Eosin......they get holier and holier and degenerate and continue...what you looked at 6 months ago is not there........Gambetti better be photographing every damned thing he is looking at.....
Okay, you need to know. You don't need to pass it on as nothing will come of it and there is not a damned thing anyone can do about it. Don't even hint at it as it will be denied and laughed at.......... USDA is gonna do as little as possible until there is actually a human case in the USA of the nvcjd........if you want to move this thing along and shake the earth....then we gotta get the victims families to make sure whoever is doing the autopsy is credible, trustworthy, and a saint with the courage of Joan of Arc........I am not kidding!!!! so, unless we get a human death from EXACTLY the same form with EXACTLY the same histopath lesions as seen in the UK nvcjd........forget any action........it is ALL gonna be sporadic!!! And, if there is a case.......there is gonna be every effort to link it to international travel, international food, etc. etc. etc. etc. etc. They will go so far as to find out if a sex partner had ever traveled to the UK/europe, etc. etc. .... It is gonna be a long, lonely, dangerous twisted journey to the truth. They have all the cards, all the money, and are willing to threaten and carry out those threats....and this may be their biggest downfall...
Thanks as always for your help. (Recently had a very startling revelation from a rather senior person in government here..........knocked me out of my chair........you must keep pushing. If I was a power person....I would be demanding that there be a least a million bovine tested as soon as possible and agressively seeking this disease. The big players are coming out of the woodwork as there is money to be made!!! In short: "FIRE AT WILL"!!! for the very dumb....who's "will"! "Will be the burden to bare if there is any coverup!"
again it was said years ago and it should be taken seriously....BSE will NEVER be found in the US! As for the BSE conference call...I think you did a great service to freedom of information and making some people feign integrity...I find it scary to see that most of the "experts" are employed by the federal government or are supported on the "teat" of federal funds. A scary picture! I hope there is a confidential panel organized by the new government to really investigate this thing.
You need to watch your back........but keep picking at them.......like a buzzard to the bone...you just may get to the truth!!! (You probably have more support than you know. Too many people are afraid to show you or let anyone else know. I have heard a few things myself... you ask the questions that everyone else is too afraid to ask.)
U.S. 50 State Emergency BSE Conference Call 2001
Singeltary Comment Docket No: 2002N-0273 (formerly Docket No. 02N-0273)
MY comments/questions are as follows ;
1. SINCE the first Harvard BSE Risk Assessment was so flawed and fraught with error after the PEER REVIEW assessment assessed this fact, how do you plan on stopping this from happening again, will there be another peer review with top TSE Scientist, an impartial jury so-to-speak, to assess this new and updated Harvard BSE/TSE risk assessment and will this assessment include the Atypical TSE and SRM issues ?
*** Suppressed peer review of Harvard study October 31, 2002 ***
2. WITH A RECENT NATION WIDE MAD COW FEED BAN RECALL in the past few months that consisted of some 10,878.06 TONS, then another Mad Cow feed ban warning letter in May, IT should seem prudent to ask why our feed bans continue to fail in 2006, and continue to fail today ?
snip...see full text;
Singeltary Full Comments Submissions;
FSIS, HARVARD, REPLY TO SINGELTARY
Document APHIS-2023-0027-0001 BSE Singeltary Comment Submission
see full submission;
Specified Risk Materials DOCKET NUMBER Docket No. FSIS-2022-0027 Singeltary Submission Attachment
APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087] Singeltary Submission Comment from Terry Singeltary Posted by the Animal and Plant Health Inspection Service on Jun 19, 2019
Control of Chronic Wasting Disease OMB Control Number: 0579-0189APHIS-2021-0004 Singeltary Submission
Docket No. APHIS-2018-0011 Chronic Wasting Disease Herd Certification
APHIS Indemnity Regulations [Docket No. APHIS-2021-0010] RIN 0579-AE65 Singeltary Comment Submission
Comment from Singeltary Sr., Terry
Posted by the Animal and Plant Health Inspection Service on Sep 8, 2022
Docket No. FDA-2003-D-0432 (formerly 03D-0186) Use of Material from Deer and Elk in Animal Feed
PUBLIC SUBMISSION
Comment from Terry Singeltary Sr.
Posted by the Food and Drug Administration on May 17, 2016 Comment
Docket No. FDA-2003-D-0432 (formerly 03D-0186) Use of Material from Deer and Elk in Animal Feed Singeltary Submission
***> Monday, November 13, 2023
Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) Singeltary Another Request for Update 2023
FRIDAY, APRIL 07, 2023
Case report: Two clusters of Creutzfeldt-Jakob disease cases within 1 year in West Michigan
MONDAY, APRIL 24, 2023
2023 CDC REPORTS CJD TSE Prion 5 cases per million in persons 55 years of age or older
THE PATHOLOGICAL PROTEIN
Hardcover, 304 pages plus photos and illustrations. ISBN 0-387-95508-9
June 2003
BY Philip Yam
CHAPTER 14 LAYING ODDS
Answering critics like Terry Singeltary, who feels that the U.S. under- counts CJD, Schonberger conceded that the current surveillance system has errors but stated that most of the errors will be confined to the older population.
reviewed medical records for CJD cases between 1991 and 1995. Comparing the actively garnered data with the death certificate infor-mation showed that “we miss about 14 percent,” said CDC epidemiolo-gist Lawrence Schonberger.
RE-Monitoring the occurrence of emerging forms of Creutzfeldt-Jakob disease in the United States
Terry S. Singeltary, retired (medically), CJD WATCH
Submitted March 26, 2003
I lost my mother to hvCJD (Heidenhain Variant CJD). I would like to comment on the CDC's attempts to monitor the occurrence of emerging forms of CJD. Asante, Collinge et al [1] have reported that BSE transmission to the 129-methionine genotype can lead to an alternate phenotype that is indistinguishable from type 2 PrPSc, the commonest sporadic CJD. However, CJD and all human TSEs are not reportable nationally. CJD and all human TSEs must be made reportable in every state and internationally. I hope that the CDC does not continue to expect us to still believe that the 85%+ of all CJD cases which are sporadic are all spontaneous, without route/source. We have many TSEs in the USA in both animal and man. CWD in deer/elk is spreading rapidly and CWD does transmit to mink, ferret, cattle, and squirrel monkey by intracerebral inoculation. With the known incubation periods in other TSEs, oral transmission studies of CWD may take much longer. Every victim/family of CJD/TSEs should be asked about route and source of this agent. To prolong this will only spread the agent and needlessly expose others. In light of the findings of Asante and Collinge et al, there should be drastic measures to safeguard the medical and surgical arena from sporadic CJDs and all human TSEs. I only ponder how many sporadic CJDs in the USA are type 2 PrPSc?
Monitoring the occurrence of emerging forms of Creutzfeldt-Jakob disease in the United States 2003 revisited 2009
August 10, 2009
Greetings,
I would like to submit a review of past CJD surveillance in the USA, and the urgent need to make all human TSE in the USA a reportable disease, in every state, of every age group, and to make this mandatory immediately without further delay. The ramifications of not doing so will only allow this agent to spread further in the medical, dental, surgical arena's. North America seems to have the most species with documented Transmissible Spongiform Encephalopathy's, most all of which have been rendered and fed back to food producing animals and to humans for years. If you look at the statistics, sporadic CJD seems to be rising in the USA, and has been, with atypical cases of the sCJD. I find deeply disturbing in the year of 2009, that Human Transmissible Spongiform Encephalopathy of any strain and or phenotype, of all age groups, and I stress all age groups, because human TSE's do not know age, and they do not know borders. someone 56 years old, that has a human TSE, that has surgery, can pass this TSE agent on i.e. friendly fire, and or passing it forward, and there have been documented nvCJD in a 74 year old. Remembering also that only sporadic CJD has been documented to transmit via iatrogenic routes, until recently with the 4 cases of blood related transmission, of which the origin is thought to be nvCJD donors. However most Iatrogenic CJD cases are nothing more than sporadic CJD, until the source is proven, then it becomes Iatrogenic. An oxymoron of sorts, because all sporadic CJD is, are multiple forms, or strains, or phenotypes of Creutzfeldt Jakob Disease, that the route and source and species have not been confirmed and or documented. When will the myth of the UKBSEnvCJD only theory be put to bed for good. This theory in my opinion, and the following there from, as the GOLD STANDARD, has done nothing more than help spread this agent around the globe. Politics and money have caused the terrible consequences to date, and the fact that TSEs are a slow incubating death, but a death that is 100% certain for those that are exposed and live long enough to go clinical. once clinical, there is no recourse, to date.
But, while sub-clinical, how many can one exposed human infect?
Can humans exposed to CWD and scrapie strains pass it forward as some form of sporadic CJD in the surgical and medical arenas?
why must we wait decades and decades to prove this point, only to expose millions needlessly, only for the sake of the industries involved?
would it not have been prudent from the beginning to just include all TSE's, and rule them out from there with transmission studies and change policies there from, as opposed to doing just the opposite?
The science of TSE's have been nothing more than a political circus since the beginning, and for anyone to still believe in this one strain, one group of bovines, in one geographical location, with only one age group of human TSE i.e. nvCJD myth, for anyone to believe this today only enhances to spreading of these human and animal TSE's. This is exactly why we have been in this quagmire.
The ones that believe that there is a spontaneous CJD in 85%+ of all cases of human TSE, and the ones that do not believe that cattle can have this same phenomenon, are two of the same, the industry, and so goes the political science aspect of this tobacco and or asbestos scenario i.e. follow the money. I could go into all angles of this man made nightmare, the real facts and science, for instance, the continuing rendering technology and slow cooking with low temps that brewed this stew up, and the fact that THE USA HAD THIS TECHNOLOGY FIRST AND SHIPPED IT TO THE U.K. SOME 5 YEARS BEFORE THE U.S. STARTED USING THE SAME TECHNOLOGY, to save on fuel cost. This is what supposedly amplified the TSE agent via sheep scrapie, and spread via feed in the U.K. bovine, and other countries exporting the tainted product. BUT most everyone ignores this fact, and the fact that the U.S. has been recycling more TSE, from more species with TSEs, than any other country documented, but yet, it's all spontaneous, and the rise in sporadic CJD in the U.S. is a happenstance of bad luck ??? I respectfully disagree. To top that all off, the infamous BSE-FIREWALL that the USDA always brags about was nothing more than ink on paper, and I can prove this. YOU can ignore it, but this is FACT (see source, as late as 2007, in one recall alone, some 10,000,000 MILLION POUNDS OF BANNED MAD COW FEED WENT OUT INTO COMMERCE TO BE FED OUT, and most was never recovered. This was banned blood laced, meat and bone meal. 2006 was a banner year for banned mad cow protein going into commerce in the U.S. (see source of FDA feed ban warning letter below). I stress that the August 4, 1997 USA mad cow feed ban and this infamous BSE firewall, was nothing more than ink on paper, it was never enforceable.
I propose that the current diagnostic criteria for human TSEs only enhances and helps the spreading of human TSE from the continued belief of the UKBSEnvCJD only theory in 2009. With all the science to date refuting it, to continue to validate this old myth, will only spread this TSE agent through a multitude of potential routes and sources i.e. consumption, medical i.e., surgical, blood, dental, endoscopy, optical, nutritional supplements, cosmetics etc. I propose as with Aguzzi, Asante, Collinge, Caughey, Deslys, Dormont, Gibbs, Gajdusek, Ironside, Manuelidis, Marsh, et al and many more, that the world of TSE Transmissible Spongiform Encephalopathy is far from an exact science, but there is enough proven science to date that this myth should be put to rest once and for all, and that we move forward with a new classification for human and animal TSE that would properly identify the infected species, the source species, and then the route. This would further have to be broken down to strain of species and then the route of transmission would further have to be broken down. Accumulation and Transmission are key to the threshold from sub- clinical to clinical disease, and key to all this, is to stop the amplification and transmission of this agent, the spreading of, no matter what strain. In my opinion, to continue with this myth that the U.K. strain of BSE one strain TSE in cows, and the nv/v CJD one strain TSE humans, and the one geographical location source i.e. U.K., and that all the rest of human TSE are just one single strain i.e. sporadic CJD, a happenstance of bad luck that just happens due to a twisted protein that just twisted the wrong way, IN 85%+ OF ALL HUMAN TSEs, when to date there are 6 different phenotypes of sCJD, and growing per Gambetti et al, and that no other animal TSE transmits to humans ??? With all due respect to all Scientist that believe this, I beg to differ. To continue with this masquerade will only continue to spread, expose, and kill, who knows how many more in the years and decades to come. ONE was enough for me, My Mom, hvCJD i.e. Heidenhain Variant CJD, DOD 12/14/97 confirmed, which is nothing more than another mans name added to CJD, like CJD itself, Jakob and Creutzfeldt, or Gerstmann-Straussler-Scheinker syndrome, just another CJD or human TSE, named after another human. WE are only kidding ourselves with the current diagnostic criteria for human and animal TSE, especially differentiating between the nvCJD vs the sporadic CJD strains and then the GSS strains and also the FFI fatal familial insomnia strains or the ones that mimics one or the other of those TSE? Tissue infectivity and strain typing of the many variants of the human and animal TSEs are paramount in all variants of all TSE. There must be a proper classification that will differentiate between all these human TSE in order to do this. With the CDI and other more sensitive testing coming about, I only hope that my proposal will some day be taken seriously. ...
please see history, and the ever evolving TSE science to date ;
Saturday, June 13, 2009
Monitoring the occurrence of emerging forms of Creutzfeldt-Jakob disease in the United States 2003 revisited 2009
Singeltary 2000
BMJ 2000; 320 doi: https://doi.org/10.1136/bmj.320.7226.8/b (Published 01 January 2000) Cite this as: BMJ 2000;320:8
02 January 2000 Terry S Singeltary retired
Rapid Response:
U.S. Scientist should be concerned with a CJD epidemic in the U.S., as well...
In reading your short article about 'Scientist warn of CJD epidemic' news in brief Jan. 1, 2000. I find the findings in the PNAS old news, made famous again. Why is the U.S. still sitting on their butts, ignoring the facts? We have the beginning of a CJD epidemic in the U.S., and the U.S. Gov. is doing everything in it's power to conceal it.
The exact same recipe for B.S.E. existed in the U.S. for years and years. In reading over the Qualitative Analysis of BSE Risk Factors-1, this is a 25 page report by the USDA:APHIS:VS. It could have been done in one page. The first page, fourth paragraph says it all;
"Similarities exist in the two countries usage of continuous rendering technology and the lack of usage of solvents, however, large differences still remain with other risk factors which greatly reduce the potential risk at the national level."
Then, the next 24 pages tries to down-play the high risks of B.S.E. in the U.S., with nothing more than the cattle to sheep ratio count, and the geographical locations of herds and flocks. That's all the evidence they can come up with, in the next 24 pages.
Something else I find odd, page 16;
"In the United Kingdom there is much concern for a specific continuous rendering technology which uses lower temperatures and accounts for 25 percent of total output. This technology was _originally_ designed and imported from the United States. However, the specific application in the production process is _believed_ to be different in the two countries."
A few more factors to consider, page 15;
"Figure 26 compares animal protein production for the two countries. The calculations are based on slaughter numbers, fallen stock estimates, and product yield coefficients. This approach is used due to variation of up to 80 percent from different reported sources. At 3.6 million tons, the United States produces 8 times more animal rendered product than the United Kingdom."
"The risk of introducing the BSE agent through sheep meat and bone meal is more acute in both relative and absolute terms in the United Kingdom (Figures 27 and 28). Note that sheep meat and bone meal accounts for 14 percent, or 61 thousand tons, in the United Kingdom versus 0.6 percent or 22 thousand tons in the United States. For sheep greater than 1 year, this is less than one-tenth of one percent of the United States supply."
"The potential risk of amplification of the BSE agent through cattle meat and bone meal is much greater in the United States where it accounts for 59 percent of total product or almost 5 times more than the total amount of rendered product in the United Kingdom."
Considering, it would only take _one_ scrapie infected sheep to contaminate the feed. Considering Scrapie has run rampant in the U.S. for years, as of Aug. 1999, 950 scrapie infected flocks. Also, Considering only one quarter spoonful of scrapie infected material is lethal to a cow.
Considering all this, the sheep to cow ration is meaningless. As I said, it's 24 pages of B.S.e.
To be continued...
Terry S. Singeltary Sr. Bacliff, Texas USA
Competing interests: No competing interests
doi:10.1016/S1473-3099(03)00715-1 Copyright © 2003 Published by Elsevier Ltd. Newsdesk
Tracking spongiform encephalopathies in North America
Xavier Bosch
Available online 29 July 2003.
Volume 3, Issue 8, August 2003, Page 463
Volume 3, Number 8 01 August 2003
Newsdesk
Tracking spongiform encephalopathies in North America
Xavier Bosch
My name is Terry S Singeltary Sr, and I live in Bacliff, Texas. I lost my mom to hvCJD (Heidenhain variant CJD) and have been searching for answers ever since. What I have found is that we have not been told the truth. CWD in deer and elk is a small portion of a much bigger problem.
49-year-old Singeltary is one of a number of people who have remained largely unsatisfied after being told that a close relative died from a rapidly progressive dementia compatible with spontaneous Creutzfeldt-Jakob disease (CJD). So he decided to gather hundreds of documents on transmissible spongiform encephalopathies (TSE) and realised that if Britons could get variant CJD from bovine spongiform encephalopathy (BSE), Americans might get a similar disorder from chronic wasting disease (CWD) the relative of mad cow disease seen among deer and elk in the USA. Although his feverish search did not lead him to the smoking gun linking CWD to a similar disease in North American people, it did uncover a largely disappointing situation.
Singeltary was greatly demoralised at the few attempts to monitor the occurrence of CJD and CWD in the USA. Only a few states have made CJD reportable. Human and animal TSEs should be reportable nationwide and internationally, he complained in a letter to the Journal of the American Medical Association (JAMA 2003; 285: 733). I hope that the CDC does not continue to expect us to still believe that the 85% plus of all CJD cases which are sporadic are all spontaneous, without route or source.
Until recently, CWD was thought to be confined to the wild in a small region in Colorado. But since early 2002, it has been reported in other areas, including Wisconsin, South Dakota, and the Canadian province of Saskatchewan. Indeed, the occurrence of CWD in states that were not endemic previously increased concern about a widespread outbreak and possible transmission to people and cattle.
To date, experimental studies have proven that the CWD agent can be transmitted to cattle by intracerebral inoculation and that it can cross the mucous membranes of the digestive tract to initiate infection in lymphoid tissue before invasion of the central nervous system. Yet the plausibility of CWD spreading to people has remained elusive.
Part of the problem seems to stem from the US surveillance system. CJD is only reported in those areas known to be endemic foci of CWD. Moreover, US authorities have been criticised for not having performed enough prionic tests in farm deer and elk.
Although in November last year the US Food and Drug Administration issued a directive to state public-health and agriculture officials prohibiting material from CWD-positive animals from being used as an ingredient in feed for any animal species, epidemiological control and research in the USA has been quite different from the situation in the UK and Europe regarding BSE.
Getting data on TSEs in the USA from the government is like pulling teeth, Singeltary argues. You get it when they want you to have it, and only what they want you to have.
Norman Foster, director of the Cognitive Disorders Clinic at the University of Michigan (Ann Arbor, MI, USA), says that current surveillance of prion disease in people in the USA is inadequate to detect whether CWD is occurring in human beings; adding that, the cases that we know about are reassuring, because they do not suggest the appearance of a new variant of CJD in the USA or atypical features in patients that might be exposed to CWD. However, until we establish a system that identifies and analyses a high proportion of suspected prion disease cases we will not know for sure. The USA should develop a system modelled on that established in the UK, he points out.
Ali Samii, a neurologist at Seattle VA Medical Center who recently reported the cases of three hunters two of whom were friends who died from pathologically confirmed CJD, says that at present there are insufficient data to claim transmission of CWD into humans; adding that [only] by asking [the questions of venison consumption and deer/elk hunting] in every case can we collect suspect cases and look into the plausibility of transmission further. Samii argues that by making both doctors and hunters more aware of the possibility of prions spreading through eating venison, doctors treating hunters with dementia can consider a possible prion disease, and doctors treating CJD patients will know to ask whether they ate venison.
CDC spokesman Ermias Belay says that the CDC will not be investigating the [Samii] cases because there is no evidence that the men ate CWD-infected meat. He notes that although the likelihood of CWD jumping the species barrier to infect humans cannot be ruled out 100% and that [we] cannot be 100% sure that CWD does not exist in humans& the data seeking evidence of CWD transmission to humans have been very limited.
Singeltary 2007
The Pathological Protein: Mad Cow, Chronic Wasting, and Other Deadly Prion Diseases
by Philip Yam
''Answering critics like Terry Singeltary, who feels that the US undercounts CJD, Schonberger _conceded_ that the current surveillance system has errors but stated that most of the errors will be confined to the older population''...
Revisiting Sporadic CJD
It’s not hard to get Terry Singeltary going. “I have my conspiracy theories,” admitted the 49-year-old Texan.1 Singeltary is probably the nation’s most relentless consumer advocate when it comes to issues in prion diseases. He has helped families learn about the sickness and coordinated efforts with support groups such as CJD Voice and the CJD Foundation. He has also connected with others who are critical of the American way of handling the threat of prion diseases. Such critics include Consumers Union’s Michael Hansen, journalist John Stauber, and Thomas Pringle, who used to run the voluminous www.madcow.org Web site. These three lend their expertise to newspaper and magazine stories about prion diseases, and they usually argue that
223
prions represent more of a threat than people realize, and that the government has responded poorly to the dangers because it is more concerned about protecting the beef industry than people’s health.
Singeltary has similar inclinations, but unlike these men, he doesn’t have the professional credentials behind him. He is an 11th-grade dropout, a machinist who retired because of a neck injury sustained at work. But you might not know that from the vast stores of information in his mind and on his hard drive. Over the years, he has provided unacknowledged help to reporters around the globe, passing on files to such big-time players as The New York Times, Newsweek, and USA Today. His networking with journalists, activists, and concerned citizens has helped medical authorities make contact with suspected CJD victims. He has kept scientists informed with his almost daily posting of news items and research abstracts on electronic newsgroups, including the bulletin board on www.vegsource.com and the BSE-listserv run out of the University of Karlsruhe, Germany. His combative, blunt, opinionated style sometimes borders on obsessive ranting that earns praise from some officials and researchers but infuriates others—especially when he repeats his conviction that “the government has lied to us, the feed industry has lied to us—all over a buck.” As evidence, Singeltary cites the USDA’s testing approach, which targets downer cows and examined 19,900 of them in 2002. To him, the USDA should test 1 million cattle, because the incidence of BSE may be as low as one in a million, as it was in some European countries. That the U.S. does not, he thinks, is a sign that the government is really not interested in finding mad cows because of fears of an economic disaster.
Singeltary got into the field of transmissible spongiform encephalopathy in 1997, just after his mother died of sporadic CJD. She had an especially aggressive version—the Heidenhain variant—that first causes the patient to go blind and then to deteriorate rapidly. She died just ten weeks after her symptoms began. Singeltary, who said he had watched his grandparents die of cancer, considered her death by CJD to be much, much worse: “It’s something you never forget.” Her uncontrollable muscle twitching became so bad “that it took three of us to hold her one time,” Singeltary recalled. “She did everything but levitate in bed and spin her head.” Doctors originally diagnosed Alzheimer’s disease, but a postmortem neuropathological exam demanded by Singeltary revealed the true nature of her death.
224 CHAPTER 14
Classifying a disease as “sporadic” is another way for doctors to say they don’t know the cause. Normal prion proteins just turn rogue in the brain for no apparent reason. The term “sporadic” is often particularly hard for the victims’ families to accept, especially when the patient was previously in robust health. Maybe it was something in the water, they wonder, or in the air, or something they ate—the same questions CJD researchers tried to answer decades ago. The names “sporadic CJD” and “variant CJD” also confuse the public and raise suspicions that U.S. authorities are hiding something when they say there have been no native variant CJD cases in the country.
Singeltary suspected an environmental cause in his mother’s demise—a feeling reinforced a year later when a neighbor died of sporadic CJD. For years, the neighbor had been taking nutritional supplements that contained cow brain extracts. Researchers from the National Institutes of Health collected samples of the supplement, Singeltary recounted, and inoculated suspensions into mice. The mice remained healthy—which only means that those supplement samples tested were prion-free.
Scientists have made several attempts during the past few decades to find a connection between sporadic CJD and the environment. Often, these studies take the form of asking family members about CJD victims—their diet, occupation, medical history, hobbies, pets, and so forth—and comparing them with non-CJD subjects. Such case-control CJD studies have produced some intriguing—and sometimes contradictory—results. In 1985, Carleton Gajdusek and his NIH colleagues reported a correlation between CJD and eating a lot of roast pork, ham, hot dogs, and lamb, as well as rare meats and raw oysters.2 Yet they also recognized that the findings were preliminary and that more studies were needed.
Following up, Robert Will of the U.K. National CJD Surveillance Unit and others pooled this data with those from two other case-control studies on CJD (one from Japan and one from the U.K.). In particular, they figured the so-called odds ratio—calculated by dividing the frequency of a possible factor in the patient group by the frequency of the factor in the control group. An odds ratio greater than 1 means that the factor may be significant. In their study, Will and his collaborators found an increase of CJD in people who have worked as health professionals (odds ratio of 1.5) and people who have had contact with cows
Laying Odds 225
(1.7) and sheep (1.6). Unfortunately, those connections were not statistically significant: The numbers of pooled patients (117) and control subjects (333) were so small that the researchers felt the odds ratios needed to reach 2.5 to 8 (depending on the assumptions) before they could be deemed statistically significant. The only statistically significant correlations they found were between CJD and a family history of either CJD (19.1) or other psychotic disease (9.9), although the latter might simply be correlated because psychotic disease may be an early symptom of undiagnosed CJD.3 In contrast with earlier findings, the team concluded that there was no association between sporadic CJD and the consumption of organ meats, including brains (0.6).
Although these case-control studies shed a certain amount of light on potential risk factors for CJD, it’s impossible to draw firm conclusions. Obtaining data that produces statistically meaningful results can be difficult because of the rarity of CJD and hence the shortage of subjects. Human memory is quite fragile, too, so patients’ families may not accurately recall the lifestyle and dietary habits of their loved ones over the course of a decade or more. Consequently, researchers must cope with data that probably contain significant biases. In a review paper on CJD, Joe Gibbs of the NIH and Richard T. Johnson of Johns Hopkins University concluded that “the absence of geographic differences in incidence is more convincing evidence against major dietary factors, since large populations eschew pork and some consume no meat or meat products.” A CJD study of lifelong vegetarians, they proposed, could produce some interesting data.4
The inconclusive results of case-control studies do not completely rule out the environment as a possible cause of CJD. “Dr. Prusiner’s theory does fit much of the data of spontaneous generation of [malformed] PrP somewhere in the brain,” Will remarked—that is, the idea that sporadic CJD just happens by itself falls within the realm of the prion theory. Still, “it’s very odd, if you look at all the forms of human prion diseases there are, all of them are transmissible in the laboratory and could be due to some sort of infectious agent.”5 One of the great difficulties, he explained, is that “given that this is a disease of an extraordinarily long incubation period, are we really confident that we can exclude childhood exposure that is transmitted from person to person, as people move around? It’s difficult to be sure about that.” There might a “carrier state” that leaves people healthy yet still able to
226 CHAPTER 14
infect others. If so, “you would never be able to identify what’s causing the spread of the disease,” concluded Will, who hasn’t stopped looking for a possible environmental link. He has some preliminary data based on studies that trace CJD victims’ lives well before the time symptoms began—up to 70 years; they suggest some degree of geographic clustering, but no obvious candidates for a source of infection.
A Case for Undercounting
The difficulty in establishing causal links in sporadic prion diseases—if there are any in the first place—underlines the importance of thorough surveillance. The U.K. has an active program, and when a victim of CJD is reported, one of Robert Will’s colleagues visits and questions the victim’s family. “No one has looked for CJD systematically in the U.S.,” the NIH’s Paul Brown noted. “Ever.”6 The U.S., through the Centers for Disease Control and Prevention, has generally maintained a more passive system, collecting information from death certificates from the National Center for Health Statistics. Because CJD is invariably fatal, mortality data is considered to be an effective means of tabulating cases. The CDC assessed the accuracy of such data by comparing the numbers with figures garnered through an active search in 1996: Teams covering five regions of the U.S. contacted the specialists involved and reviewed medical records for CJD cases between 1991 and 1995. Comparing the actively garnered data with the death certificate information showed that “we miss about 14 percent,” said CDC epidemiologist Lawrence Schonberger. “That’s improving. Doctors are becoming more knowledgeable,” thanks to increased scientific and media attention given to prion diseases.7
The active surveillance study of 1996, however, only looked at cases in which physicians attributed the deaths to CJD. Misdiagnosed patients or patients who never saw a neurologist were not tabulated— thus CJD may be grossly underreported. Many neurological ailments share symptoms, especially early on. According to various studies, autopsies have found that CJD is misdiagnosed as other ills, such as dementia or Alzheimer’s disease, 5 to 13 percent of the time. The CDC finds that around 50,000Americans die from Alzheimer’s each year
Laying Odds 227
(about 4 million have the disease, according to the Alzheimer’s Association). Therefore, one could argue that thousands of CJD cases are being missed. (On the flip side, CJD could be mistakenly diagnosed as Alzheimer’s disease or dementia, but the number of CJD patients is so small that they wouldn’t dramatically skew the statistics for other neurological ills.)
In part to address the issue of misdiagnosis, CJD families have asked the CDC to place the disease on the national list of officially notifiable illnesses, which tends to include more contagious conditions such as AIDS, tuberculosis, hepatitis, and viral forms of encephalitis. Currently, only some states impose this requirement. CDC officials have discounted the utility of such an approach, arguing that it would duplicate the mortality data, which is more accurate than early diagnoses of CJD, anyway. Moreover, mandatory reporting of CJD cases does not necessarily guarantee the end to missed cases.8
One clue suggests that the passive system is undercounting CJD in the U.S.: racial difference. The number of black CJD victims is about 38 percent that of white victims. Rather than sporadic CJD being a one in-a-million lottery, it’s more like one-in-2.5-million for African Americans. Access to medical care might be one reason. Schonberger recounted that the CDC had asked other countries with substantial black populations to submit CJD figures for comparison but found that the surveillance in those countries was inadequate. “We haven’t been able to find any comparable literature on this issue, so it’s still up in the air,” Schonberger said. On the other hand, Alzheimer’s disease is more common among black people than whites, with an estimated higher prevalence ranging from 14 percent to almost 100 percent, according to a February 2002 report by the Alzheimer’s Association. Are some black CJD cases being misdiagnosed as Alzheimer’s?
Answering critics like Terry Singeltary, who feels that the U.S. undercounts CJD, Schonberger conceded that the current surveillance system has errors but stated that most of the errors will be confined to the older population. As Schonberger pointed out, no doctor would misdiagnose a 30-year-old CJD patient as having Alzheimer’s. The average age of the first 100 variant CJD victims was 29; should the epidemiology of vCJD change—if older people start coming down with it—then there would be problems. “The adequacy of our overall CJD surveillance would be greatly reduced should the proportion of older individuals affected by variant CJD substantially increase,” Schonberger explained.9
SNIP...SEE FULL TEXT;
Singeltary Submission SEAC 2007
SEAC SPONGIFORM ENCEPHALOPATHY ADVISORY COMMITTEE Minutes of the 99th meeting held on 14th December 2007 Singeltary Submission
This was 22 years to the day Mom died from the Heidenhain Variant of Creutzfeldt Jakob Disease i.e. hvCJD, when i made this submission to SEAC and this was their reply to my questions of concern about cjd in the USA, my how things have changed...terry
SEAC SPONGIFORM ENCEPHALOPATHY ADVISORY COMMITTEE Minutes of the 99th meeting held on 14th December 2007
ITEM 8 – PUBLIC QUESTION AND ANSWER SESSION 40. The Chair explained that the purpose of the question and answer session was to give members of the public an opportunity to ask questions related to the work of SEAC. Mr Terry Singeltary (Texas, USA) had submitted a question prior to the meeting, asking: “With the Nor-98 now documented in five different states so far in the USA in 2007, and with the two atypical BSE H-base cases in Texas and Alabama, with both scrapie and chronic wasting disease (CWD) running rampant in the USA, is there any concern from SEAC with the rise of sporadic CJD in the USA from ''unknown phenotype'', and what concerns if any, in relations to blood donations, surgery, optical, and dental treatment, do you have with these unknown atypical phenotypes in both humans and animals in the USA? Does it concern SEAC, or is it of no concern to SEAC? Should it concern USA animal and human health officials?”
41. A member considered that this question appeared to be primarily related to possible links between animal and human TSEs in the USA. There is no evidence that sCJD is increasing in the USA and no evidence of any direct link between TSEs and CJD in the USA. Current evidence does not suggest that CWD is a significant risk to human health. There are unpublished data from a case of human TSE in the USA that are suggestive of an apparently novel form of prion disease with distinct molecular characteristics. However, it is unclear whether the case had been further characterised, if it could be linked to animal TSEs or if other similar cases had been found in the USA or elsewhere. In relation to the possible public health implications of atypical scrapie, H-type BSE and CWD, research was being conducted to investigate possible links and surveillance was in place to detect any changes in human TSEs. Although possible links between these diseases and human TSEs are of concern and require research, there is no evidence to suggest immediate public health action is warranted. The possible human health risks from classical scrapie had been discussed earlier in the meeting. Members noted that there are effective channels of discussion and collaboration on research between USA and European groups. Members agreed it is important to keep a watching brief on new developments on TSEs.
TUESDAY, DECEMBER 12, 2023
***> CREUTZFELDT JAKOB DISEASE TSE PRION DISEASE UPDATE USA DECEMBER 2023 <***
***> 2023 Professor John Collinge on tackling prion diseases <***
“The best-known human prion disease is sporadic Creutzfeldt-Jakob disease (sCJD), a rapidly progressive dementia which accounts for around 1 in 5000 deaths worldwide.”
There is accumulating evidence also for iatrogenic AD.
Understanding prion biology, and in particular how propagation of prions leads to neurodegeneration, is therefore of central research importance in medicine.
SATURDAY, JULY 22, 2023
***> Alzheimer's Disease Update Singeltary et al
i wrote this in 2015, but just this year 2023, OIE et al have made atypical BSE a legal trading commodity, you don't have to report it, just a note at the end of the year on animal disease status, if you feel like it, and now we go back to square one, 1984...
2015
typical BSE can propagate as nvCJD and or sporadic CJD (Collinge et al), and sporadic CJD has now been linked to atypical BSE, Scrapie and atypical Scrapie, and scientist are very concerned with CWD TSE prion in the Cervid populations. in my opinion, the BSE MRR policy, which overtook the BSE GBR risk assessments for each country, and then made BSE confirmed countries legal to trade mad cow disease, which was all brought forth AFTER that fateful day December 23, 2003, when the USA lost its gold card i.e. BSE FREE status, that's the day it all started. once the BSE MRR policy was shoved down every countries throat by USDA inc and the OIE, then the legal trading of Scrapie was validated to be a legal trading commodity (2023 NOW SO IS ATYPICAL BSE), also shoved through by the USDA inc and the OIE, the world then lost 30 years of attempted eradication of the BSE TSE prion disease typical and atypical strains, and the BSE TSE Prion aka mad cow type disease was thus made a legal trading commodity, like it or not. its all about money now folks, trade, to hell with human health with a slow incubating disease, that is 100% fatal once clinical, and forget the fact of exposure, sub-clinical infection, and friendly fire there from i.e. iatrogenic TSE prion disease, the pass it forward mode of the TSE PRION aka mad cow type disease. its all going to be sporadic CJD or sporadic ffi, or sporadic gss, or now the infamous VPSPr. ...problem solved $$$
GOOD LUCK!
TODAY, WE ARE BACK TO SQUARE ONE, 1984, WITH MAD COW DISEASE, THANKS TO THE OIE AND USDA INC.
Terry S. Singeltary Sr., Bacliff, Texas, USA, 77518, flounder9@verizon.net
No comments:
Post a Comment