Wednesday, June 12, 2019

FINAL REPORT OF AN AUDIT CONDUCTED IN BRAZIL MAY 15 TO JUNE 2, 2017 EVALUATING THE FOOD SAFETY SYSTEMS GOVERNING MEAT PRODUCTS EXPORTED TO THE UNITED STATES OF AMERICA

FINAL REPORT OF AN AUDIT CONDUCTED IN BRAZIL MAY 15 TO JUNE 2, 2017 EVALUATING THE FOOD SAFETY SYSTEMS GOVERNING MEAT PRODUCTS EXPORTED TO THE UNITED STATES OF AMERICA 

FINAL REPORT OF AN AUDIT CONDUCTED IN BRAZIL

MAY 15 TO JUNE 2, 2017

EVALUATING THE FOOD SAFETY SYSTEMS GOVERNING MEAT PRODUCTS EXPORTED TO THE UNITED STATES OF AMERICA

FINAL REPORT OF AN AUDIT CONDUCTED IN BRAZIL

MAY 15 TO JUNE 2, 2017

EVALUATING THE FOOD SAFETY SYSTEMS GOVERNING MEAT PRODUCTS

EXPORTED TO THE UNITED STATES OF AMERICA

November 6, 2017

Food Safety and Inspection Service

United States Department of Agriculture 

Executive Summary

This report describes the outcome of an onsite equivalence verification audit conducted by the Food Safety and Inspection Service (FSIS) from May 15 to June 2, 2017. The purpose of the audit was to determine whether Brazil's meat inspection system remains equivalent to that of the United States, with the ability to export products that are safe, wholesome, unadulterated, and correctly labeled and packaged. At the time of this audit, Brazil was approved to export raw intact, ready-to-eat (RTE), not ready-to-eat (NRTE) processed, and thermally processed, commercially sterile (TPCS) meat.

The audit focused on six system equivalence components: (1) Government Oversight (e.g., Organization and Administration); (2) Government Statutory Authority, Food Safety, and Other Consumer Protection Regulations (e.g., Inspection System Operation, Product Standards and Labeling, and Humane Handling); (3) Government Sanitation; (4) Government Hazard Analysis and Critical Control Points (HACCP) System; (5) Government Chemical Residue Testing Programs; and (6) Government Microbiological Testing Programs. The FSIS auditors identified the following systemic findings:

Government Oversight

 The Central Competent Authority (CCA) has not developed policies and procedures to identify potential areas where conflicts of interest could arise between inspection personnel and the regulated establishments where they work;

 The CCA does not verify that regulatory information provided to supervisory official veterinarians is consistently communicated to their subordinates;

 The CCA does not verify that in-plant inspectors perform their assigned duties in a manner that is consistent with the issued instructions; and

 The CCA has not developed procedures to standardize the assessment of competence and performance of in-plant inspection personnel assigned to United States-certified establishments. Government Statutory Authority and Food Safety and Other Consumer Protection Regulations

 The implemented post-mortem inspection procedures are inadequate to ensure that only wholesome carcasses, free of contamination and defects receive the mark of inspection;

 Brazilian TPCS product reinspected at United States point-of-entry demonstrates a trend of abnormal container violations; and

 Higher-level officials did not adequately review and follow-up on periodic supervisory reports and plans of action.

Government Sanitation

 Inspection personnel do not adequately enforce sanitation regulatory requirements to prevent the creation of insanitary conditions and direct product contamination.

Government HACCP System

 Inspection personnel do not accurately assess the design and implementation of the establishments HACCP systems, and do not conduct adequate verification sampling of products. Government Chemical Residue Testing

 The official methods of chemical analysis used by the government laboratories is inconsistent with FSIS requirements; and

 The CCA has not instructed establishments and in-plant inspectors to hold livestock carcasses selected for residue sampling until acceptable results are received.

During the audit exit meeting, the CCA committed to address the preliminary findings as presented. FSIS received a written response from the CCA addressing all outstanding concerns identified in the draft final audit report. FSIS will evaluate the adequacy of the proposed corrective actions and base its activities for future equivalence verification on the information provided. 

snip...see full text;


Post forecasts beef production in 2019 at 10.2 million metric tons, which is an increase of 3 percent. The increase is driven by solid exports, mostly to China and Hong Kong and moderate domestic demand. Posts also forecasts pork production to increase by over 3 percent and reach nearly 3.8 million metric tons, reflecting a rebound in exports, moderate domestic demand and favorable feed costs in 2019. The expected growth of the Brazilian economy in 2019, with declining inflation and unemployment rates support optimism in the animal protein sector in Brazil. Major uncertainties in the near future include the volatility of the exchange rate, end of the year elections and a new federal administration in 2019. 



USDA Halts Beef Imports from Brazil Drovers

June 22, 2017 04:59 PM

Imports of fresh beef from Brazil are being halted into the U.S. The announcement was made by Secretary of Agriculture Sonny Perdue after inspections by USDA-Food Safety and Inspection Service (FSIS) revealed concerns over safety issues.

"Ensuring the safety of our nation’s food supply is one of our critical missions, and it’s one we undertake with great seriousness," Perdue says.

Brazil’s Ministry of Agriculture self-suspended the shipment of beef from five packing plants after U.S. officials found "irregularities" in the processed carcasses this past week. However, the move by Perdue and USDA will supersede the self-suspension.

A statement from the Brazilian Association of Beef Industry Exports says the self-suspension happened "after the detection of [bovine] reactions to the vaccine for foot-and-mouth disease, that in some cases can provoke internal, and not externally visible abscesses."

The voluntary halt by Brazil appeared to be temporary while the vaccine manufacture attempted to find a solution for the abscesses. Now it could be much longer before fresh Brazilian beef enters the U.S.

"Once again the industry is inheriting a problem that it has not created," says Antonio Camardelli, president of the board of the Brazilian Association of Meat Exporters.

The Ministry of Agriculture was alerted by USDA-FSIS on June 16 and exports were stopped immediately from those plants impacted. State locations and ownership of the packing facilities include:

Owner JBS Location Mato Grosso do Sul 

Owner Minerva Location Goias 

Owner Marfrig Locations Sao Paulo Mato Grosso Rio Grande do Sul The U.S. just began exporting fresh beef from Brazil last year after a trade agreement was reached on Aug. 1. Prior to this trade deal, Brazil had not had access into the U.S. since 2003 because of foot-and-mouth disease outbreaks. Similarly, U.S. beef had not been in Brazil since 2003 when bovine spongiform encephalopathy was found.

"Although international trade is an important part of what we do at USDA, and Brazil has long been one of our partners, my first priority is to protect American consumers," Perdue says. "That’s what we’ve done by halting the import of Brazilian fresh beef. I commend the work of USDA’s Food Safety and Inspection Service for painstakingly safeguarding the food we serve our families."

There were 31 packing plants in Brazil approved to export into the U.S. prior to this suspension.

Brazil’s meat packing industry has seen a number of setbacks in the past few months after the discovery of a widespread bribery scandal. Aftershocks from the corruption scandal have included:

The stoppage of exports into a number of countries JBS owners stepping down from the board The selloff of several other JBS packing plants in South America More selloffs of different JBS businesses like Five Rivers Cattle Feeding in the U.S. In March, USDA FSIS began inspecting all meat product coming from Brazil. During that time FSIS has rejected 11% of Brazilian fresh beef imports. It adds up to 1.9 million pounds of beef from 106 lots that were rejected because of public health concerns, sanitary conditions and animal health issues. 

National Cattlemen’s Beef Association (NCBA) is in support of the decision to suspend fresh beef imports from Brazil.

"This action is the result of USDA’s strong, science-based testing protocol of imported beef and this proves that our food safety system works effectively. NCBA supports USDA’s commitment to science-based trade and its commitment to keeping our food supply as safe as possible," says Craig Uden, NCBA president.

There is no timeline for when Brazil will be eligible to again export beef to the U.S. market. 


Minvera to export beef to US

09.15.2016

By Erica Shaffer SAO PAULO, Brazil – Two meat processing facilities owned by Minerva SA have been cleared to export fresh beef to the United States.

The company’s facilities in Palmeiras de Goias and Barretos have processing capacities of 2,000 head of cattle per day and 840 head of cattle per day, respectively. In a notice to shareholders, the company explained that, “The US import system is based on specific quotas depending on the country or group of countries, and Brazil has not yet been assigned a quota. Therefore, the country will initially be included under the ‘Other’ quota (with a total equivalent to 64,800 ton/year), where countries such as Chile, Costa Rica, El Salvador, Honduras, Nicaragua and the Dominican Republic, together, are also able to export to USA.”

In August, USDA announced that Brazil had reopened its markets to US beef exports. Brazil had banned imports of US beef and beef products in 2003 after the discovery of a confirmed case of bovine spongiform encephalopathy (BSE). Brazil had its own brush with atypical BSE in 2012. Animals classified as having atypical BSE may or may not get BSE.

Minerva operates 17 slaughtering and boning plants — 11 in Brazil, three in Paraguay, two in Uruguay and one in Colombia. Slaughtering capacity is 17,330 head of cattle per day, and boning capacity is 20,300 head per day, according to the company’s website. Minerva also operates 13 distribution centers.



BRAZIL

Food Safety

Live Cattle, Beef, and Beef Products

Brazil bans imports of U.S. live cattle, beef, and beef products following the detection of a BSEpositive animal in the United States in 2003. In late 2008, Brazil promulgated a draft regulation that establishes sanitary requirements for the importation of ruminants and ruminant products from countries affected by BSE. Brazil continues to state that it has not completed its review of technical information provided by the United States. During high level discussions, Brazil indicated it was not willing to conform its import restriction to the OIE guidelines. U.S. officials pressed Brazilian officials for resolution of this matter on a number of occasions in 2012. The United States will continue to urge Brazil to open its market fully to U.S. beef and beef products based on science, the OIE guidelines, and the United States’ risk status.

See section III.C for an explanation of the BSE trade issue.

Pork

Brazil only allows imports of U.S. pork from plants that its inspectors have individually inspected and approved. This approach is burdensome on the industry and significantly limits the market access of companies willing and able to export to Brazil. Brazil has not explained 

33

why a plant-by-plant inspection system is required rather than the systems‐based approach recommended by the WTO and used in FSIS’ ongoing system equivalence process. The United States continues to discuss this issue with Brazil.

Brazil also restricts imports of pork and pork products from the United States, citing the risk of trichinosis. Currently, fresh U.S. pork can be imported into Brazil only if the product is tested to be free of trichinae. These requirements are unwarranted as U.S. pork producers maintain stringent biosecurity protocols that serve to limit the incidence of trichinosis in the United States to extremely low levels.

In May 2009, the United States proposed a voluntary certification process, which Brazil rejected in October 2009. In August 2010, the United States held technical discussions with Brazil on U.S. risk management techniques for trichinosis. In October 2010, Brazil indicated that it was prepared to work with the United States on this issue. U.S. officials engaged on the matter with their Brazilian counterparts on a number of occasions in 2012. The United States will continue to engage Brazilian authorities to address these restrictions.


BSE Brazil Barretos, December 7, 2012 - Minerva S.A. (BOVESPA: BEEF3; Bloomberg: BEEF3.BZ; Reuters: BEEF3.SA) 

Notice to the Market - Note of Clarification about news in the press today

NOTICE TO THE MARKET - NOTE OF CLARIFICATION ABOUT NEWS IN THE PRESS TODAY Barretos, December 7, 2012 - Minerva S.A. (BOVESPA: BEEF3; Bloomberg: BEEF3.BZ; Reuters: BEEF3.SA), one of the leaders in South America in the production and sale of fresh beef, live cattle and cattle byproducts, with operations also in the beef, pork and poultry processing segments, hereby informs its shareholders and the market in general that in response to reports in a few communication channels, the Ministry of Agriculture, Livestock and Supply of Brazil today clarified the following:

With regard to the death of a cow in Paraná state:

1) This case occurred in 2010 in Paraná;

2) It was detected that the animal carried the agent that causes Bovine Spongiform Encephalopathy (BSE) (commonly known as the mad cow disease) but neither manifested the disease nor died because of it;

3) The episode does not reflect any risk whatsoever to public health or animal health, considering that the animal did not die as a result of said disease;

4) The World Organization for Animal Health (OIE) has officially classified Brazil as a country with insignificant risk of BSE;

5) BSE does not exist in Brazil.

We emphasize that the cattle in Brazil is predominantly grass feed and that the incidence of the disease is related to ingestion by the cattle of animal products, which is forbidden in Brazil.

Click here to access the full document.


2019 

 SATURDAY, JUNE 01, 2019 

Brazil reports another cases of mad cow disease atypical BSE TSE Prion

PLEASE BE ADVISED THERE IS NO SCIENTIFIC PROOF THAT ANY ATYPICAL BSE TSE PRION IS OF A SPONTANEOUS OLD AGE DISEASE, NOT CAUSED BY FEED, THIS IS FALSE AND UNPROVEN, IN FACT, ATYPICAL BSE OF THE L AND H TYPE ARE TRANSMISSIBLE BY ORAL ROUTE. THIS STATEMENT THAT ATYPICAL BSE IS A SPONTANEOUS EVENT CAUSED BY OLD AGE, CAUSED BY NOTHING, IS ABSOLUTELY A LIE, AND THE GOVERNMENT OF BRAZIL, AND OTHER GOVERNMENTS THAT PRODUCE SUCH STATEMENTS, KNOWS THIS IS AN UNPROVEN STATEMENT...TERRY SINGELTARY SR.


Sent: Sat, Jun 1, 2019 2:08 pm

Subject: Brazil reports another cases of mad cow disease atypical BSE TSE Prion

Brazil spots atypical mad cow disease 

Devdiscourse News Desk Brasilia Brazil Updated: 31-05-2019 16:50 IST Created: 31-05-2019 16:33 IST 

Brazil spots atypical mad cow disease Image Credit: (Flickr)

The Brazilian government reported on Friday a case of atypical mad cow disease in an animal in Mato Grosso state, according to a statement from the country's Agriculture Ministry. The ministry said the case of mad cow disease, or bovine spongiform encephalopathy (BSE), was detected in a 17-year-old cow. It said it collected the necessary material for tests and incinerated all other parts of the cow.

"No part of the animal entered the food chain, there are no risks for the population," the statement said. The case was considered "atypical" as the animal contracted the BSE protein spontaneously, rather than through the feed supply. Classical cases of mad cow are caused when cattle are fed brain or spinal tissue of other ruminants, which is now forbidden in nearly all beef producing countries including Brazil.

In 2012 in Brazil tests showed that a cow that had died two years earlier in Parana state had developed the protein that causes mad cow disease, though the animal never developed the disease and died of natural causes. The World Organisation for Animal Health maintained Brazil's status as a country with an insignificant risk of BSE at that time, after it confirmed the atypical Parana case.

Even so, several countries including South Korea, China and Egypt banned some or all beef imports from Brazil, the world's top exporter. That trade was later reopened. Brazil's Agriculture Ministry said it had informed all importers on Friday about the case, as well as the World Organisation for Animal Health.

(With inputs from agencies.)


COMMODITIES (OLD)MAY 31, 2019 / 4:35 PM / UPDATED 21 HOURS AGO 

Brazil reports atypical case of mad cow disease -ministry 2 MIN READ

SAO PAULO, May 31 (Reuters) - The Brazilian government reported on Friday a case of atypical mad cow disease in an animal in Mato Grosso state, according to a statement from the country’s Agriculture Ministry.

The ministry said the case of mad cow disease, or bovine spongiform encephalopathy (BSE), was detected in a 17-year-old cow. It said it collected the necessary material for tests and incinerated all other parts of the cow.

“No part of the animal entered the food chain, there are no risks for the population,” the statement said.

The case was considered “atypical” as the animal contracted the BSE protein spontaneously, rather than through the feed supply. Classical cases of mad cow are caused when cattle are fed brain or spinal tissue of other ruminants, which is now forbidden in nearly all beef producing countries including Brazil.

ADVERTISEMENT 

In 2012 in Brazil tests showed that a cow that had died two years earlier in Parana state had developed the protein that causes mad cow disease, though the animal never developed the disease and died of natural causes.

ADVERTISEMENT 

 The World Organisation for Animal Health maintained Brazil’s status as a country with an insignificant risk of BSE at that time, after it confirmed the atypical Parana case.

Even so, several countries including South Korea, China and Egypt banned some or all beef imports from Brazil, the world’s top exporter. That trade was later reopened.

Brazil’s Agriculture Ministry said it had informed all importers on Friday about the case, as well as the World Organisation for Animal Health. (Reporting by Roberto Samora and Marcelo Teixeira; Editing by Sandra Maler)


PLEASE BE ADVISED THERE IS NO SCIENTIFIC PROOF THAT ANY ATYPICAL BSE TSE PRION IS OF A SPONTANEOUS OLD AGE DISEASE, NOT CAUSED BY FEED, THIS IS FALSE AND UNPROVEN, IN FACT, ATYPICAL BSE OF THE L AND H TYPE ARE TRANSMISSIBLE BY ORAL ROUTE. THIS STATEMENT THAT ATYPICAL BSE IS A SPONTANEOUS EVENT CAUSED BY OLD AGE, CAUSED BY NOTHING, IS ABSOLUTELY A LIE, AND THE GOVERNMENT OF BRAZIL, AND OTHER GOVERNMENTS THAT PRODUCE SUCH STATEMENTS, KNOWS THIS IS AN UNPROVEN STATEMENT...TERRY SINGELTARY SR.

Joint Statement from President Donald J. Trump and President Jair Bolsonaro FOREIGN POLICY

 Issued on: March 19, 2019  President Donald J. Trump and President Jair Messias Bolsonaro of Brazil committed to building a new partnership between their two countries focused on increasing prosperity, enhancing security, and promoting democracy, freedom, and national sovereignty.

President Trump and President Bolsonaro reiterated that the United States and Brazil stand with the Interim President of Venezuela Juan Guaido, along with the democratically elected National Assembly, and the Venezuelan people, as they work to peacefully restore constitutional order to Venezuela.

The two Presidents agreed to deepen their partnership through the United States-Brazil Security Forum to combat terrorism, narcotics and arms trafficking, cybercrimes, and money laundering, and they welcomed two new arrangements to enhance border security. President Bolsonaro announced Brazil’s intent to exempt United States citizens from tourist visa requirements, and the Presidents agreed to take the steps necessary to enable Brazil to participate in the Department of Homeland Security’s Trusted Traveler Global Entry Program.

President Trump announced the United States’ intent to designate Brazil as a Major Non-NATO Ally. The Presidents further welcomed the signing of a Technology Safeguards Agreement, which will enable United States companies to conduct commercial space launches from Brazil, as well as an agreement between the National Aeronautics and Space Administration and the Brazilian Space Agency to launch a jointly developed satellite in the near future.

The two leaders agreed to build a Prosperity Partnership to increase jobs and reduce barriers to trade and investment. To this end, they decided to enhance the work of the United States-Brazil Commission on Economic and Trade Relations, created under the Agreement on Trade and Economic Cooperation, to explore new initiatives to facilitate trade investment and good regulatory practices.

The two leaders also made a number of trade-related commitments. President Bolsonaro announced that Brazil will implement a tariff rate quota, allowing for the annual importation of 750 thousand tons of American wheat at zero rate. In addition, the United States and Brazil agreed to science-based conditions to allow for the importation of United States pork. In order to allow for the resumption of Brazil’s beef exports, the United States agreed to expeditiously schedule a technical visit by the United States Department of Agriculture’s Food Safety and Inspection Service to audit Brazil’s raw beef inspection system, as soon as it is satisfied with Brazil’s food safety documentation. The Presidents instructed their teams to negotiate a Mutual Recognition Agreement concerning their Trusted Trader programs, which will reduce costs for American and Brazilian companies.

The two leaders announced a new phase of the United States-Brazil CEO Forum, and welcomed the creation of a $100 million Biodiversity Impact Investment Fund that will catalyze sustainable investment in the Amazon region. As leaders of two of the fastest-growing energy suppliers in the world, the Presidents agreed to establish a United States-Brazil Energy Forum to facilitate energy-related trade and investment.

President Trump welcomed Brazil’s ongoing efforts regarding economic reforms, best practices, and a regulatory framework in line with the standards of the Organization for Economic Cooperation and Development (OECD). President Trump noted his support for Brazil initiating the accession procedure to become a full member of the OECD. Commensurate with its status as a global leader, President Bolsonaro agreed that Brazil will begin to forgo special and differential treatment in World Trade Organization negotiations, in line with the United States proposal. President Bolsonaro thanked President Trump and the American people for their hospitality.


Brazil Kept Mad Cow Secret for Two Years

By Dan Flynn on December 10, 2012

Enough beef to feed one million Americans for a year has been imported from Brazil without the bovine spongiform encephalopathy (BSE) mitigations that are supposed to be applied to countries where BSE is known to exist. 

That’s because for the past two years, USDA was operating under the assumption that Brazil had not experienced any BSE, or Mad Cow disease as it’s commonly known. 

But Brazil–the world’s biggest beef exporting country–was keeping a secret for the past two years. 

A secret that if known might well have seen its beef banned from the U.S., or at the very least, subjected its beef to BSE controls. 

That’s because while the U.S. was importing 67 million pounds of beef from Brazil, South America’s biggest country was keeping a Mad Cow secret. But it’s not a secret anymore. 

Here’s what we know so far: 

Brazil on Dec. 6 became the 26th country in the world to report an incident of BSE, or the always-fatal Mad Cow disease that can be transmitted to humans. 

The designation stems from a 13-year-old cow that died two years ago in December 2010 in Brazil that was suffering with at least proteins common to bovine spongiform encephalopathy (BSE), but Mad Cow disease might not have killed it. 

Details finally began to emerge when Brazil filed a notification to the World Organization for Animal Health (OIE), reporting that a 13-year- old cow died in December 2010 in Parana and BSE was suspected. 

The notification said the dead cow was subjected to a histopathological test, one of two primary tests for BSE. 

It was reportedly negative. 

A second test, not conducted until June 15, 2012 at the National Reference Laboratory in Recife, was positive. 

The beef exporting Brazil claims the long delays were due to work overloads at the lab and OIE rules that cause it to give the test a low priority. 

After the positive test, Brazil also sent a brain sample to the OIE reference lab in the United Kingdom, where a second positive test for Mad Cow was conducted. 

OIE has not issued its own report. 

Countries reporting BSE cases often pay a price in having their beef banned from world markets. 

That’s what happened to the U.S. in 2003 when its first BSE case was discovered in Washington state. 

Countries around the world banned U.S. beef sales. 

Although Japan announced it was banning beef from Brazil beginning on Saturday, it is unclear how other countries are going to react, including the U.S. 

Japan is apparently not buying a second report put out by Brazil’s Agricultural Minister that the dead cow did not have BSE, but just the protein believed to cause the disease. 

BSE is a prion disease that involves folded proteins. 

The Ag minister’s story is the dead cow was experiencing a spontaneous genetic mutation that was unlikely to evolve into BSE. 

Brazil could not confirm the exact cause of death for the grass-fed cow. 

It had collapsed and died 24 hours later. 

“The two year delay in Brazil’s disease notification is a symptom of the failure of the OIE’s global system that erroneously assumes foreign countries, particularly developing countries, have the same means, commitment and capabilities as the United States to control and eradicate diseases, says Max Thornsberry, who chairs R-CALF USA’s Animal Health Committee. 

Thornsberry said USDA’s reliance on foreign countries and OIE to protect U.S. citizens from unsafe imports is “absolutely foolish” and again points up the need for country-of-origin labeling. 

USDA cutbacks in on-site review of the foreign regulatory systems that are supposed to inspect meat exported to the U.S. were reported earlier by Food Safety News. 

R-CALF USA stands for the Ranchers-Cattlemen Action Legal Fund, United Stockgrowers of America. The organization is based in Billings, MT. The only trade- rrelated beef announcement out of USDA since Dec. 6 involved Canada. The XL Foods plant at Brooks, Alberta was permitted to export beef to the U.S. for the first time since the facility’s E. coli crisis.

Tags: Brazil, BSE, Japan, mad cow disease


FRIDAY, NOVEMBER 03, 2017 

First case of V180I rare mutation in a Brazilian patient with Creutzfeldt-Jakob disease


TUESDAY, SEPTEMBER 27, 2016 

Classical Scrapie Diagnosis in ARR/ARR Sheep in Brazil 

Acta Scientiae Veterinariae, 2015. 43(Suppl 1): 69. 


MONDAY, AUGUST 1, 2016 

USDA Announces Reopening of Brazilian Market to U.S. Beef Exports and the Potential for Transmissible Spongiform Encephalopathy TSE prion disease


MONDAY, MAY 5, 2014 

Brazil BSE Mad Cow disease confirmed OIE 02/05/2014


Monday, May 5, 2014 

Brazil 2nd BSE Mad Cow disease confirmed OIE 02/05/2014 


Thursday, April 24, 2014 

Brazil investigates possible BSE mad cow case 


WEDNESDAY, JANUARY 29, 2014

Another Suspect case of Creutzfeldt-Jakob disease investigated in Brazil


THURSDAY, SEPTEMBER 26, 2013 

Brazil evaluate the implementation of health rules on animal by-products and derived products SRM BSE TSE PRION aka MAD COW DISEASE


Wednesday, December 19, 2012 

Scientific Report of the European Food Safety Authority on the Assessment of the Geographical BSE Risk (GBR) of Brazil 


***> Friday, December 07, 2012 

***> ATYPICAL BSE BRAZIL 2010 FINALLY CONFIRMED OIE 2012 


TUESDAY, MARCH 26, 2019 

Joint Statement from President Donald J. Trump USA and President Jair Bolsonaro Brazil FOREIGN POLICY BSE TSE Prion aka mad cow disease


WEDNESDAY, APRIL 24, 2019 

USDA Announces Atypical Bovine Spongiform Encephalopathy Detection Aug 29, 2018 A Review of Science 2019


TUESDAY, APRIL 30, 2019 

Pathobiology, Genetics, and Detection of Transmissible Spongiform Encephalopathies 2018 Annual Report


THURSDAY, MARCH 14, 2019 

USDA APHIS CDC FDA BSE TSE PRION UPDATE 2019


MONDAY, JANUARY 21, 2019 

Bovine Spongiform Encephalopathy BSE TSE Prion Surveillance FDA USDA APHIS FSIS UPDATE 2019


SUNDAY, APRIL 14, 2019 

Estimation of prion infectivity in tissues of cattle infected with atypical BSE by real time-quaking induced conversion assay


WEDNESDAY, APRIL 17, 2019 

Estimating the impact on food and edible materials of changing scrapie control measures: The scrapie control model


TUESDAY, MARCH 26, 2019 

USDA ARS 2018 USAHA RESOLUTIONS TWO PRONGED APPROACH NEEDED FOR ADVANCING CATTLE TRACEABILITY


***> Wednesday, January 23, 2019 

***> CFIA SFCR Guidance on Specified risk material (SRM) came into force on January 15, 2019 <***


SATURDAY, MARCH 2, 2019 

MAD COW TSE PRION DISEASE AND THE PEER REVIEW PROCESS OF BSe Science $$$


PRION 2018 CONFERENCE
P98 The agent of H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism transmits after oronasal challenge 

Greenlee JJ (1), Moore SJ (1), and West Greenlee MH (2) (1) United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, IA, United States (2) Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States. 

reading up on this study from Prion 2018 Conference, very important findings ;


***> This study demonstrates that the H-type BSE agent is transmissible by the oronasal route. 


***> These results reinforce the need for ongoing surveillance for classical and atypical BSE to minimize the risk of potentially infectious tissues entering the animal or human food chains.


PRION 2018 CONFERENCE ABSTRACT



P98 The agent of H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism transmits after oronasal challenge 

Greenlee JJ (1), Moore SJ (1), and West Greenlee MH (2) (1) United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, IA, United States (2) Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States. 

In 2006, a case of H-type bovine spongiform encephalopathy (BSE) was reported in a cow with a previously unreported prion protein polymorphism (E211K). 

The E211K polymorphism is heritable and homologous to the E200K mutation in humans that is the most frequent PRNP mutation associated with familial Creutzfeldt-Jakob disease. 

Although the prevalence of the E211K polymorphism is low, cattle carrying the K211 allele develop H-type BSE with a rapid onset after experimental inoculation by the intracranial route. 

The purpose of this study was to investigate whether the agents of H-type BSE or H-type BSE associated with the E211K polymorphism transmit to wild type cattle or cattle with the K211 allele after oronasal exposure. 

Wild type (EE211) or heterozygous (EK211) cattle were oronasally inoculated with either H-type BSE from the 2004 US Htype BSE case (n=3) or from the 2006 US H-type case associated with the E211K polymorphism (n=4) using 10% w/v brain homogenates. 

Cattle were observed daily throughout the course of the experiment for the development of clinical signs. 

At approximately 50 months post-inoculation, one steer (EK211 inoculated with E211K associated H-BSE) developed clinical signs including inattentiveness, loss of body condition, weakness, ataxia, and muscle fasciculations and was euthanized. 

Enzyme immunoassay confirmed that abundant misfolded protein was present in the brainstem, and immunohistochemistry demonstrated PrPSc throughout the brain. 

Western blot analysis of brain tissue from the clinically affected steer was consistent with the E211K H-type BSE inoculum. 

With the experiment currently at 55 months post-inoculation, no other cattle in this study have developed clinical signs suggestive of prion disease. This study demonstrates that the H-type BSE agent is transmissible by the oronasal route. 

These results reinforce the need for ongoing surveillance for classical and atypical BSE to minimize the risk of potentially infectious tissues entering the animal or human food chains. 

PRION 2018 CONFERENCE ABSTRACT

WEDNESDAY, AUGUST 15, 2018 

***> The agent of H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism transmits after oronasal challenge


PLOS ONE Journal 

IBNC Tauopathy or TSE Prion disease, it appears, no one is sure 

Terry S. Singeltary Sr., 03 Jul 2015 at 16:53 GMT

***however in 1 C-type challenged animal, Prion 2015 Poster Abstracts S67 PrPsc was not detected using rapid tests for BSE.

***Subsequent testing resulted in the detection of pathologic lesion in unusual brain location and PrPsc detection by PMCA only.

*** IBNC Tauopathy or TSE Prion disease, it appears, no one is sure ***

http://www.plosone.org/annotation/listThread.action?root=86610


*** Singeltary reply ; Molecular, Biochemical and Genetic Characteristics of BSE in Canada Singeltary reply ;
 

MONDAY, JANUARY 09, 2017 

Oral Transmission of L-Type Bovine Spongiform Encephalopathy Agent among Cattle 

CDC Volume 23, Number 2—February 2017 

*** Consumption of L-BSE–contaminated feed may pose a risk for oral transmission of the disease agent to cattle.

*** Consumption of L-BSE–contaminated feed may pose a risk for oral transmission of the disease agent to cattle.



TUESDAY, AUGUST 28, 2018 

USDA finds BSE infection in Florida cow 08/28/18 6:43 PM



WEDNESDAY, AUGUST 29, 2018 

USDA Announces Atypical Bovine Spongiform Encephalopathy Detection USDA 08/29/2018 10:00 AM EDT



WEDNESDAY, AUGUST 29, 2018 

Transmissible Spongiform Encephalopathy TSE Prion Atypical BSE Confirmed Florida Update USA August 28, 2018



***> P.108: Successful oral challenge of adult cattle with classical BSE

Sandor Dudas1,*, Kristina Santiago-Mateo1, Tammy Pickles1, Catherine Graham2, and Stefanie Czub1 1Canadian Food Inspection Agency; NCAD Lethbridge; Lethbridge, Alberta, Canada; 2Nova Scotia Department of Agriculture; Pathology Laboratory; Truro, Nova Scotia, Canada

Classical Bovine spongiform encephalopathy (C-type BSE) is a feed- and food-borne fatal neurological disease which can be orally transmitted to cattle and humans. Due to the presence of contaminated milk replacer, it is generally assumed that cattle become infected early in life as calves and then succumb to disease as adults. Here we challenged three 14 months old cattle per-orally with 100 grams of C-type BSE brain to investigate age-related susceptibility or resistance. During incubation, the animals were sampled monthly for blood and feces and subjected to standardized testing to identify changes related to neurological disease. At 53 months post exposure, progressive signs of central nervous system disease were observed in these 3 animals, and they were euthanized. Two of the C-BSE animals tested strongly positive using standard BSE rapid tests, however in 1 C-type challenged animal, Prion 2015 Poster Abstracts S67 PrPsc was not detected using rapid tests for BSE. Subsequent testing resulted in the detection of pathologic lesion in unusual brain location and PrPsc detection by PMCA only. 

***Our study demonstrates susceptibility of adult cattle to oral transmission of classical BSE. 

We are further examining explanations for the unusual disease presentation in the third challenged animal.



***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals.

P.86: Estimating the risk of transmission of BSE and scrapie to ruminants and humans by protein misfolding cyclic amplification

Morikazu Imamura, Naoko Tabeta, Yoshifumi Iwamaru, and Yuichi Murayama

National Institute of Animal Health; Tsukuba, Japan

To assess the risk of the transmission of ruminant prions to ruminants and humans at the molecular level, we investigated the ability of abnormal prion protein (PrPSc) of typical and atypical BSEs (L-type and H-type) and typical scrapie to convert normal prion protein (PrPC) from bovine, ovine, and human to proteinase K-resistant PrPSc-like form (PrPres) using serial protein misfolding cyclic amplification (PMCA).

Six rounds of serial PMCA was performed using 10% brain homogenates from transgenic mice expressing bovine, ovine or human PrPC in combination with PrPSc seed from typical and atypical BSE- or typical scrapie-infected brain homogenates from native host species. In the conventional PMCA, the conversion of PrPC to PrPres was observed only when the species of PrPC source and PrPSc seed matched. However, in the PMCA with supplements (digitonin, synthetic polyA and heparin), both bovine and ovine PrPC were converted by PrPSc from all tested prion strains. On the other hand, human PrPC was converted by PrPSc from typical and H-type BSE in this PMCA condition.

Although these results were not compatible with the previous reports describing the lack of transmissibility of H-type BSE to ovine and human transgenic mice, our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals.



P.170: Potential detection of oral transmission of H type atypical BSE in cattle using in vitro conversion

***P.170: Potential detection of oral transmission of H type atypical BSE in cattle using in vitro conversion

Sandor Dudas, John G Gray, Renee Clark, and Stefanie Czub Canadian Food Inspection Agency; Lethbridge, AB Canada

Keywords: Atypical BSE, oral transmission, RT-QuIC

The detection of bovine spongiform encephalopathy (BSE) has had a significant negative impact on the cattle industry worldwide. In response, governments took actions to prevent transmission and additional threats to animal health and food safety. While these measures seem to be effective for controlling classical BSE, the more recently discovered atypical BSE has presented a new challenge. To generate data for risk assessment and control measures, we have challenged cattle orally with atypical BSE to determine transmissibility and mis-folded prion (PrPSc) tissue distribution. Upon presentation of clinical symptoms, animals were euthanized and tested for characteristic histopathological changes as well as PrPSc deposition.

The H-type challenged animal displayed vacuolation exclusively in rostral brain areas but the L-type challenged animal showed no evidence thereof. To our surprise, neither of the animals euthanized, which were displaying clinical signs indicative of BSE, showed conclusive mis-folded prion accumulation in the brain or gut using standard molecular or immunohistochemical assays. To confirm presence or absence of prion infectivity, we employed an optimized real-time quaking induced conversion (RT-QuIC) assay developed at the Rocky Mountain Laboratory, Hamilton, USA.

Detection of PrPSc was unsuccessful for brain samples tests from the orally inoculated L type animal using the RT-QuIC. It is possible that these negative results were related to the tissue sampling locations or that type specific optimization is needed to detect PrPSc in this animal. We were however able to consistently detect the presence of mis-folded prions in the brain of the H-type inoculated animal. Considering the negative and inconclusive results with other PrPSc detection methods, positive results using the optimized RT-QuIC suggests the method is extremely sensitive for H-type BSE detection. This may be evidence of the first successful oral transmission of H type atypical BSE in cattle and additional investigation of samples from these animals are ongoing.






Detection of PrPBSE and prion infectivity in the ileal Peyer’s patch of young calves as early as 2 months after oral challenge with classical bovine spongiform encephalopathy 

Ivett Ackermann1 , Anne Balkema‑Buschmann1 , Reiner Ulrich2 , Kerstin Tauscher2 , James C. Shawulu1 , Markus Keller1 , Olanrewaju I. Fatola1 , Paul Brown3 and Martin H. Groschup1* 

Abstract 

In classical bovine spongiform encephalopathy (C-BSE), an orally acquired prion disease of cattle, the ileal Peyer’s patch (IPP) represents the main entry port for the BSE agent. In earlier C-BSE pathogenesis studies, cattle at 4–6 months of age were orally challenged, while there are strong indications that the risk of infection is highest in young animals. In the present study, unweaned calves aged 4–6 weeks were orally challenged to determine the earli‑ est time point at which newly formed PrPBSE and BSE infectivity are detectable in the IPP. For this purpose, calves were culled 1 week as well as 2, 4, 6 and 8 months post-infection (mpi) and IPPs were examined for BSE infectivity using a bovine PrP transgenic mouse bioassay, and for PrPBSE by immunohistochemistry (IHC) and protein misfolding cyclic amplifcation (PMCA) assays. For the frst time, BSE prions were detected in the IPP as early as 2 mpi by transgenic mouse bioassay and PMCA and 4 mpi by IHC in the follicular dendritic cells (FDCs) of the IPP follicles. These data indi‑ cate that BSE prions propagate in the IPP of unweaned calves within 2 months of oral uptake of the agent.

In summary, our study demonstrates for the frst time PrPBSE (by PMCA) and prion infectivity (by mouse bioassay) in the ileal Peyer’s patch (IPP) of young calves as early as 2 months after infection. From 4 mpi nearly all calves showed PrPBSE positive IPP follicles (by IHC), even with PrPBSE accumulation detectable in FDCs in some animals. Finally, our results confrm the IPP as the early port of entry for the BSE agent and a site of initial propagation of PrPBSE and infectivity during the early pathogenesis of the disease. Terefore, our study supports the recommendation to remove the last four metres of the small intestine (distal ileum) at slaughter, as designated by current legal requirements for countries with a controlled BSE risk status, as an essential measure for consumer and public health protection.



A study comparing preclinical cattle infected naturally with BSE to clinically affected cattle either naturally or experimentally infected with BSE by the oral route found the most abundant PrPSc in the brainstem area (39), which is consistent with ascension to the brain from the gut by sympathetic and parasympathetic projections (40). In our experiment, abundant prions were observed in the brainstem of cattle with clinical signs of BSE, which is similar to the amount in their thalamus or midbrain regions. Interestingly, prions in the brainstem of cattle with clinical evidence of BSE seeded the RT-QuIC reactions faster than any other brain region despite the brainstem area having lower EIA OD values (Table 2) in comparison to other brain regions. This suggests that higher concentrations of prions do not necessarily seed the reaction faster. Perhaps prions of the brainstem exist in a preferred conformation for better conversion despite being present in lower concentrations.

snip... 



The 2004 enhanced BSE surveillance program was so flawed, that one of the top TSE prion Scientist for the CDC, Dr. Paul Brown stated ; Brown, who is preparing a scientific paper based on the latest two mad cow cases to estimate the maximum number of infected cows that occurred in the United States, said he has "absolutely no confidence in USDA tests before one year ago" because of the agency's reluctance to retest the Texas cow that initially tested positive.

see ;



CDC - Bovine Spongiform Encephalopathy and Variant Creutzfeldt ... Dr. Paul Brown is Senior Research Scientist in the Laboratory of Central Nervous System ... Address for correspondence: Paul Brown, Building 36, Room 4A-05, ...


PAUL BROWN COMMENT TO ME ON THIS ISSUE

Tuesday, September 12, 2006 11:10 AM

"Actually, Terry, I have been critical of the USDA handling of the mad cow issue for some years, and with Linda Detwiler and others sent lengthy detailed critiques and recommendations to both the USDA and the Canadian Food Agency."

OR, what the Honorable Phyllis Fong of the OIG found ;

Finding 2 Inherent Challenges in Identifying and Testing High-Risk Cattle Still Remain


IT is of my opinion, that the OIE and the USDA et al, are the soul reason, and responsible parties, for Transmissible Spongiform Encephalopathy TSE prion diseases, including typical and atypical BSE, typical and atypical Scrapie, and all strains of CWD, and human TSE there from, spreading around the globe. I have lost all confidence of this organization as a regulatory authority on animal disease, and consider it nothing more than a National Trading Brokerage for all strains of animal TSE, just to satisfy there commodity. AS i said before, OIE should hang up there jock strap now, since it appears they will buckle every time a country makes some political hay about trade protocol, commodities and futures. IF they are not going to be science based, they should do everyone a favor and dissolve there organization. JUST because of low documented human body count with nvCJD and the long incubation periods, the lack of sound science being replaced by political and corporate science in relations with the fact that science has now linked some sporadic CJD with atypical BSE and atypical scrapie, and the very real threat of CWD being zoonosis, I believed the O.I.E. has failed terribly and again, I call for this organization to be dissolved... 

Monday, May 05, 2014

Member Country details for listing OIE CWD 2013 against the criteria of Article 1.2.2., the Code Commission recommends consideration for listing



Friday, December 5, 2014

SPECIAL ALERT The OIE recommends strengthening animal disease surveillance worldwide



O.4.3

Spread of BSE prions in cynomolgus monkeys (Macaca fascicularis) after oral transmission

Edgar Holznagel1, Walter Schulz-Schaeffer2, Barbara Yutzy1, Gerhard Hunsmann3, Johannes Loewer1 1Paul-Ehrlich-Institut, Federal Institute for Sera and Vaccines, Germany; 2Department of Neuropathology, Georg-August University, Göttingen, Germany, 3Department of Virology and Immunology, German Primate Centre, Göttingen, Germany

Background: BSE-infected cynomolgus monkeys represent a relevant animal model to study the pathogenesis of variant Creutzfeldt-Jacob disease (vCJD).

Objectives: To study the spread of BSE prions during the asymptomatic phase of infection in a simian animal model.

Methods: Orally BSE-dosed macaques (n=10) were sacrificed at defined time points during the incubation period and 7 orally BSE-dosed macaques were sacrificed after the onset of clinical signs. Neuronal and non-neuronal tissues were tested for the presence of proteinase-K-resistant prion protein (PrPres) by western immunoblot and by paraffin-embedded tissue (PET) blot technique.

Results: In clinically diseased macaques (5 years p.i. + 6 mo.), PrPres deposits were widely spread in neuronal tissues (including the peripheral sympathetic and parasympathetic nervous system) and in lymphoid tissues including tonsils. In asymptomatic disease carriers, PrPres deposits could be detected in intestinal lymph nodes as early as 1 year p.i., but CNS tissues were negative until 3 – 4 years p.i. Lumbal/sacral segments of the spinal cord and medulla oblongata were PrPres positive as early as 4.1 years p.i., whereas sympathetic trunk and all thoracic/cervical segments of the spinal cord were still negative for PrPres. However, tonsil samples were negative in all asymptomatic cases.

Discussion: There is evidence for an early spread of BSE to the CNS via autonomic fibres of the splanchnic and vagus nerves indicating that trans-synaptical spread may be a time-limiting factor for neuroinvasion. Tonsils were predominantly negative during the main part of the incubation period indicating that epidemiological vCJD screening results based on the detection of PrPres in tonsil biopsies may mostly tend to underestimate the prevalence of vCJD among humans.

P.4.23

Transmission of atypical BSE in humanized mouse models

Liuting Qing1, Wenquan Zou1, Cristina Casalone2, Martin Groschup3, Miroslaw Polak4, Maria Caramelli2, Pierluigi Gambetti1, Juergen Richt5, Qingzhong Kong1 1Case Western Reserve University, USA; 2Instituto Zooprofilattico Sperimentale, Italy; 3Friedrich-Loeffler-Institut, Germany; 4National Veterinary Research Institute, Poland; 5Kansas State University (Previously at USDA National Animal Disease Center), USA

Background: Classical BSE is a world-wide prion disease in cattle, and the classical BSE strain (BSE-C) has led to over 200 cases of clinical human infection (variant CJD). Atypical BSE cases have been discovered in three continents since 2004; they include the L-type (also named BASE), the H-type, and the first reported case of naturally occurring BSE with mutated bovine PRNP (termed BSE-M). The public health risks posed by atypical BSE were largely undefined.

Objectives: To investigate these atypical BSE types in terms of their transmissibility and phenotypes in humanized mice. Methods: Transgenic mice expressing human PrP were inoculated with several classical (C-type) and atypical (L-, H-, or Mtype) BSE isolates, and the transmission rate, incubation time, characteristics and distribution of PrPSc, symptoms, and histopathology were or will be examined and compared.

Results: Sixty percent of BASE-inoculated humanized mice became infected with minimal spongiosis and an average incubation time of 20-22 months, whereas only one of the C-type BSE-inoculated mice developed prion disease after more than 2 years. Protease-resistant PrPSc in BASE-infected humanized Tg mouse brains was biochemically different from bovine BASE or sCJD. PrPSc was also detected in the spleen of 22% of BASE-infected humanized mice, but not in those infected with sCJD. Secondary transmission of BASE in the humanized mice led to a small reduction in incubation time. The atypical BSE-H strain is also transmissible with distinct phenotypes in the humanized mice, but no BSE-M transmission has been observed so far.

Discussion: Our results demonstrate that BASE is more virulent than classical BSE, has a lymphotropic phenotype, and displays a modest transmission barrier in our humanized mice.

BSE-H is also transmissible in our humanized Tg mice.

The possibility of more than two atypical BSE strains will be discussed.

Supported by NINDS NS052319, NIA AG14359, and NIH AI 77774.


P03.137

Transmission of BSE to Cynomolgus Macaque, a Non-human Primate; Development of Clinical Symptoms and Tissue Distribution of PrPSC

Yamakawa, Y1; Ono, F2; Tase, N3; Terao, K3; Tannno, J3; Wada, N4; Tobiume, M5; Sato, Y5; Okemoto-Nakamura, Y1; Hagiwara, K1; Sata, T5 1National Institure of Infectious diseases, Cell biology and Biochemistry, Japan; 2Corporation for Production and Research Laboratory Primates., Japan; 3National Institure of Biomedical Innovation, Tsukuba Primate Reserch Center, Japan; 4Yamauchi Univ., Veterinary Medicine, Japan; 5National Institure of Infectious diseases, Pathology, Japan

Two of three cynomolgus monkeys developed abnormal neuronal behavioral signs at 30-(#7) and 28-(#10) months after intracerebral inoculation of 200ul of 10% brain homogenates of BSE affected cattle (BSE/JP6). Around 30 months post inoculation (mpi), they developed sporadic anorexia and hyperekplexia with squeal against environmental stimulations such as light and sound. Tremor, myoclonic jerk and paralysis became conspicuous during 32 to 33-mpi, and symptoms become worsened according to the disease progression. Finally, one monkey (#7) fell into total paralysis at 36-mpi. This monkey was sacrificed at 10 days after intensive veterinary care including infusion and per oral supply of liquid food. The other monkey (#10) had to grasp the cage bars to keep an upright posture caused by the sever ataxia. This monkey was sacrificed at 35-mpi. EEG of both monkeys showed diffuse slowing. PSD characteristic for sporadic CJD was not observed in both monkeys. The result of forearm movement test showed the hypofunction that was observed at onset of clinical symptoms. Their cognitive function determined by finger maze test was maintained at the early stage of sideration. However, it was rapidly impaired followed by the disease progression. Their autopsied tissues were immunochemically investigated for the tissue distribution of PrPSc. Severe spongiform change in the brain together with heavy accumulation of PrPSc having the type 2B/4 glycoform profile confirmed successful transmission of BSE to Cynomolgus macaques. Granular and linear deposition of PrPSC was detected by IHC in the CNS of both monkeys. At cerebral cortex, PrPSC was prominently accumulated in the large plaques. Sparse accumulation of PrPSc was detected in several peripheral nerves of #7 but not in #10 monkey, upon the WB analysis. Neither #7 nor #10 monkey accumulated detectable amounts of PrPSc in their lymphatic organs such as tonsil, spleen, adrenal grands and thymus although PrPSc was barely detected in the submandibular lymph node of #7 monkey. Such confined tissue distribution of PrPSc after intracerebral infection with BSE agent is not compatible to that reported on the Cynomolgus macaques infected with BSE by oral or intra-venous (intra-peritoneal) routs, in which PrPSc was accumulated at not only CNS but also widely distributed lymphatic tissues.

P04.27

Experimental BSE Infection of Non-human Primates: Efficacy of the Oral Route

Holznagel, E1; Yutzy, B1; Deslys, J-P2; Lasmézas, C2; Pocchiari, M3; Ingrosso, L3; Bierke, P4; Schulz-Schaeffer, W5; Motzkus, D6; Hunsmann, G6; Löwer, J1 1Paul-Ehrlich-Institut, Germany; 2Commissariat à l´Energie Atomique, France; 3Instituto Superiore di Sanità, Italy; 4Swedish Institute for Infectious Disease control, Sweden; 5Georg August University, Germany; 6German Primate Center, Germany

Background: In 2001, a study was initiated in primates to assess the risk for humans to contract BSE through contaminated food. For this purpose, BSE brain was titrated in cynomolgus monkeys.

Aims: The primary objective is the determination of the minimal infectious dose (MID50) for oral exposure to BSE in a simian model, and, by in doing this, to assess the risk for humans. Secondly, we aimed at examining the course of the disease to identify possible biomarkers.

Methods: Groups with six monkeys each were orally dosed with lowering amounts of BSE brain: 16g, 5g, 0.5g, 0.05g, and 0.005g. In a second titration study, animals were intracerebrally (i.c.) dosed (50, 5, 0.5, 0.05, and 0.005 mg).

Results: In an ongoing study, a considerable number of high-dosed macaques already developed simian vCJD upon oral or intracerebral exposure or are at the onset of the clinical phase. However, there are differences in the clinical course between orally and intracerebrally infected animals that may influence the detection of biomarkers.

Conclusions: Simian vCJD can be easily triggered in cynomolgus monkeys on the oral route using less than 5 g BSE brain homogenate. The difference in the incubation period between 5 g oral and 5 mg i.c. is only 1 year (5 years versus 4 years). However, there are rapid progressors among orally dosed monkeys that develop simian vCJD as fast as intracerebrally inoculated animals.

The work referenced was performed in partial fulfilment of the study “BSE in primates“ supported by the EU (QLK1-2002-01096).http://www.neuroprion.org/resources/pdf_docs/conferences/prion2007/abstract_book.pdf

Simian vCJD can be easily triggered in cynomolgus monkeys on the oral route using less than 5 g BSE brain homogenate.


WE know now, and we knew decades ago, that 5.5 grams of suspect feed in TEXAS was enough to kill 100 cows.

look at the table and you'll see that as little as 1 mg (or 0.001 gm) caused 7% (1 of 14) of the cows to come down with BSE;

Risk of oral infection with bovine spongiform encephalopathy agent in primates

Corinne Ida Lasmézas, Emmanuel Comoy, Stephen Hawkins, Christian Herzog, Franck Mouthon, Timm Konold, Frédéric Auvré, Evelyne Correia, Nathalie Lescoutra-Etchegaray, Nicole Salès, Gerald Wells, Paul Brown, Jean-Philippe Deslys Summary The uncertain extent of human exposure to bovine spongiform encephalopathy (BSE)--which can lead to variant Creutzfeldt-Jakob disease (vCJD)--is compounded by incomplete knowledge about the efficiency of oral infection and the magnitude of any bovine-to-human biological barrier to transmission. We therefore investigated oral transmission of BSE to non-human primates. We gave two macaques a 5 g oral dose of brain homogenate from a BSE-infected cow. One macaque developed vCJD-like neurological disease 60 months after exposure, whereas the other remained free of disease at 76 months. On the basis of these findings and data from other studies, we made a preliminary estimate of the food exposure risk for man, which provides additional assurance that existing public health measures can prevent transmission of BSE to man.

snip...

BSE bovine brain inoculum

100 g 10 g 5 g 1 g 100 mg 10 mg 1 mg 0·1 mg 0·01 mg

Primate (oral route)* 1/2 (50%)

Cattle (oral route)* 10/10 (100%) 7/9 (78%) 7/10 (70%) 3/15 (20%) 1/15 (7%) 1/15 (7%)

RIII mice (ic ip route)* 17/18 (94%) 15/17 (88%) 1/14 (7%)

PrPres biochemical detection

The comparison is made on the basis of calibration of the bovine inoculum used in our study with primates against a bovine brain inoculum with a similar PrPres concentration that was inoculated into mice and cattle.8 *Data are number of animals positive/number of animals surviving at the time of clinical onset of disease in the first positive animal (%). The accuracy of bioassays is generally judged to be about plus or minus 1 log. ic ip=intracerebral and intraperitoneal.

Table 1: Comparison of transmission rates in primates and cattle infected orally with similar BSE brain inocula

Published online January 27, 2005


It is clear that the designing scientists must also have shared Mr Bradley’s surprise at the results because all the dose levels right down to 1 gram triggered infection.



it is clear that the designing scientists must have also shared Mr Bradleyâs surprise at the results because all the dose levels right down to 1 gram triggered infection.


 


I ask Professor Kong ;

Thursday, December 04, 2008 3:37 PM

Subject: RE: re--Chronic Wating Disease (CWD) and Bovine Spongiform Encephalopathies (BSE): Public Health Risk Assessment

IS the h-BSE more virulent than typical BSE as well, or the same as cBSE, or less virulent than cBSE? just curious.....

Professor Kong reply ;

.....snip

As to the H-BSE, we do not have sufficient data to say one way or another, but we have found that H-BSE can infect humans. I hope we could publish these data once the study is complete. Thanks for your interest.

Best regards, Qingzhong Kong, PhD Associate Professor Department of Pathology Case Western Reserve University Cleveland, OH 44106 USA 

P.4.23 Transmission of atypical BSE in humanized mouse models 

Liuting Qing1, Wenquan Zou1, Cristina Casalone2, Martin Groschup3, Miroslaw Polak4, Maria Caramelli2, Pierluigi Gambetti1, Juergen Richt5, Qingzhong Kong1 1Case Western Reserve University, USA; 2Instituto Zooprofilattico Sperimentale, Italy; 3Friedrich-Loeffler-Institut, Germany; 4National Veterinary Research Institute, Poland; 5Kansas State University (Previously at USDA National Animal Disease Center), USA

Background: Classical BSE is a world-wide prion disease in cattle, and the classical BSE strain (BSE-C) has led to over 200 cases of clinical human infection (variant CJD). Atypical BSE cases have been discovered in three continents since 2004; they include the L-type (also named BASE), the H-type, and the first reported case of naturally occurring BSE with mutated bovine PRNP (termed BSE-M). The public health risks posed by atypical BSE were argely undefined.

Objectives: To investigate these atypical BSE types in terms of their transmissibility and phenotypes in humanized mice.

Methods: Transgenic mice expressing human PrP were inoculated with several classical (C-type) and atypical (L-, H-, or Mtype) BSE isolates, and the transmission rate, incubation time, characteristics and distribution of PrPSc, symptoms, and histopathology were or will be examined and compared.

Results: Sixty percent of BASE-inoculated humanized mice became infected with minimal spongiosis and an average incubation time of 20-22 months, whereas only one of the C-type BSE-inoculated mice developed prion disease after more than 2 years. Protease-resistant PrPSc in BASE-infected humanized Tg mouse brains was biochemically different from bovine BASE or sCJD. PrPSc was also detected in the spleen of 22% of BASE-infected humanized mice, but not in those infected with sCJD. Secondary transmission of BASE in the humanized mice led to a small reduction in incubation time. The atypical BSE-H strain is also transmissible with distinct phenotypes in the humanized mice, but no BSE-M transmission has been observed so far.

Discussion: Our results demonstrate that BASE is more virulent than classical BSE, has a lymphotropic phenotype, and displays a modest transmission barrier in our humanized mice. BSE-H is also transmissible in our humanized Tg mice. The possibility of more than two atypical BSE strains will be discussed.

Supported by NINDS NS052319, NIA AG14359, and NIH AI 77774.


see full text ;


>>> It is distinct from atypical BSE, which may develop spontaneously, according to information from the U.S. Centers for Disease Control and Prevention.

THIS IS A MYTH $$$

***atypical spontaneous BSE in France LOL***

FRANCE STOPS TESTING FOR MAD COW DISEASE BSE, and here’s why, to many spontaneous events of mad cow disease $$$

***so 20 cases of atypical BSE in France, compared to the remaining 40 cases in the remaining 12 Countries, divided by the remaining 12 Countries, about 3+ cases per country, besides Frances 20 cases. you cannot explain this away with any spontaneous BSe. ...TSS

Sunday, October 5, 2014

France stops BSE testing for Mad Cow Disease


Thursday, March 24, 2016

FRANCE CONFIRMS BOVINE SPONGIFORM ENCEPHALOPATHY BSE MAD COW (ESB) chez une vache dans les Ardennes


***atypical spontaneous BSE in France LOL***

FRANCE STOPS TESTING FOR MAD COW DISEASE BSE, and here’s why, to many spontaneous events of mad cow disease $$$


we have seen the spontaneous BSE epidemic in France, what about the other HIGH INCIDENCE ATYPICAL BSE COUNTRY OF POLAND, another atypical spontaneous event of high incidence. how can this be blamed on a happenstance of nothing, i.e. old age? goes against all junk science to date on the spontaneous atypical BSE i.e.

> In 2015, the OIE determined that atypical BSE occurred spontaneously at a low rate in all cattle populations and would be excluded for BSE risk. ...

>Atypical BSE occurs in older cattle, usually 8 years of age or greater, and does not appear to be associated with contaminated feed. Like classic or sporadic CJD in humans, it seems to arise rarely and spontaneously. 

 POLAND ATYPICAL BSE AND SPORADIC CJD


we have seen the spontaneous BSE epidemic in France, what about the other HIGH INCIDENCE ATYPICAL BSE COUNTRY OF POLAND, another atypical spontaneous event of high incidence. how can this be blamed on a happenstance of nothing, i.e. old age? goes against all junk science to date on the spontaneous atypical BSE i.e.

> In 2015, the OIE determined that atypical BSE occurred spontaneously at a low rate in all cattle populations and would be excluded for BSE risk. ...

>Atypical BSE occurs in older cattle, usually 8 years of age or greater, and does not appear to be associated with contaminated feed. Like classic or sporadic CJD in humans, it seems to arise rarely and spontaneously. 

 POLAND ATYPICAL BSE AND SPORADIC CJD


Atypical status of bovine spongiform encephalopathy in Poland: a molecular typing study

Summary

The aim of this study was to analyze molecular features of protease-resistant prion protein (PrPres) in Western blots of BSE cases diagnosed in Poland with respect to a possible atypical status. Confirmed cases were analyzed by Western blotting with several monoclonal antibodies directed at N-terminal and core epitopes of prion protein (PrP). Most cases showed the classical glycoprofile characterized by the dominance of the di- over the monoglycosylated PrPres band, yielding di-/mono- ratios well above 2 and by reactivity with antibodies having their epitopes in bovine PrP region 110–242 (C-type cases). Surprisingly, seven cases of BSE were atypical. Six were classified as L-type based on a slightly lower molecular mass (Mr) of the non- glycosylated band with respect to C-types and a conspicuously low di-/mono- ratio of glycosylated PrPres bands approaching unity. One case was classified as H-type because of a higher Mr of PrPres bands on the blot when compared with C-type cases. A characteristic epitope of H-type PrPres occurred in the 101–110 region of PrP for which only antibody 12B2 had a sufficient affinity. The occurrence of atypical cases only in animals 9 years of age and older raises questions about the mechanisms of prion diseases and the origin of BSE.


Atypical status of bovine spongiform encephalopathy in Poland: a molecular typing study

M. P. Polak1, J. F. Zmudzinski1, J. G. Jacobs2, J. P. M. Langeveld2

1 National Veterinary Research Institute, Pulawy, Poland

2 Central Institute for Animal Disease Control (CIDC-Lelystad), Lelystad, The Netherlands Received 24 April 2007; Accepted 27 August 2007; Published online 26 September 2007 # Springer-Verlag 2007 

snip...

Clarification of whether these atypical cases represent genuine strains of BSE would be accomplished by transmission studies in mice. Such studies have already been performed in France, Germany and Italy [3, 5, 14, 15]. For H-type cases in France, successful transmission was achieved in both wild-type, and transgenic mice expressing bovine and ovine PrPC. In Germany, successful transmission of both an L-type and an H-type case to transgenic mice overexpressing bovine PrPC has been described. PrPres from those mice was identical to the inoculum used in the study, proving the existence of distinct strains of BSE. All atypical features of those isolates were maintained in the inoculated mice, indicating the existence of several prion strains in cattle, or alternatively a possible evolution to a single BSE strain, as suggested from data obtained by Capobianco et al. with wild-type inbred mice [15]. This second hypothesis could fit with data from the United Kingdom, where over 180,000 cases of BSE were diagnosed by passive surveillance. British and European experience based on tissue analysis from clinically affected animals showed consistent characteristics of BSE agent not only on histological sections from cattle brains but also when inoculating mice, pointing to the existence of one uniform strain of BSE. Therefore, it is possible that a sporadic form of BSE present in the cattle population at a very low rate in the past could have spread to naive animals via contaminated meatand-bone meals. Spontaneous BSE, if it occurs, must be a very rare phenomenon. However, data for Poland, where 14% of all cases comprised an atypical form of BSE, seems to be in contradiction to this hypothesis. But when the average age of all positive cases in Poland is taken into account, BSE is generally found in older animals (mean age of 7.7). Analysis of the age structure of cattle in Poland in the period of 2002–2006 shows that 56–60% of all animals were 7 years old and above. A much larger number of cattle should be tested to get better insight into the real prevalence of atypical BSE. However, current tendencies based on economic analysis point to a decrease in the number of tests performed rather than expanding this scheme any further. It would be sensible to maintain a certain level of testing focused on the older age group to distinguish between a stable, thus sporadic-based, situation of BSE, or alternatively a fade-out, thus epidemic-based, situation. Exploring the subject of spontaneous BSE in the cattle population may be ceased for economic reasons, and it may never be known while this answer is in our reach thanks to great financial efforts in recent years. 


Poland is Proof atypical BSE is NOT an old cow spontaneous disease...tss

Number of reported cases of bovine spongiform encephalopathy (BSE) in farmed cattle worldwide* (excluding the United Kingdom) Country/Year 

Poland 

89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16

0 0 0 0 0 0 0 0 0 0 0 0 0 4f 5 11 19 10 9 5 4 2 1m 3 1 0 0 0


Source: USDA, APHIS, VS 

What is the level of passenger traffic arriving in the United States from Poland? 

A total of 188,946 passengers arrived at US airports on direct flights from Poland in fiscal year 2000. 

An undetermined number of passengers arrived in the US from Poland via indirect flights. 

Under APHIS-PPQ’s agricultural quarantine inspection monitoring, 451 air passengers from Poland were sampled for items of agricultural interest in fiscal year 2000. 

Thirteen (13) of these passengers, or 2.9 percent, carried a total of 26.2 kg of meat items that could potentially harbor the pathogen(s) that cause BSE. 

None of these passengers from whom meat items were confiscated reported plans to visit or work on a ranch or farm during their visit to the US. 

Source: US Department of Transportation, and APHIS-PPQ Agricultural Quarantine Inspection data base CEI’s plans for follow up: CEI has no plans to provide additional information on this situation. If you need more information or wish to comment, you may contact Judy Akkina at (970) 490-7852 or Carol Tuszynski at (970) 490-7893. 


What measures has USDA-APHIS taken to prevent the introduction of BSE? To prevent BSE from entering the United States, APHIS has restricted the importation of live ruminants and certain ruminant products from countries where BSE is known to exist.

Greetings FDA and public, 

if you go to the below site, and search all BSE known countries and check out their air traffic illegal meat they have confiscated, and check out the low number checked, compared to actual passenger traffic, would not take too much for some nut to bring in FMD/TSEs into the USA as a 'suitcase bomb'. 

[[Under APHIS-PPQ's agricultural quarantine inspection monitoring, 284 air passengers from Israel were sampled for items of agricultural interest in fiscal year 2001. Seven of these passengers, or 2 percent, carried a total of 11 kg of meat items that could potentially harbor the pathogen that causes BSE. None of these passengers from whom meat items were confiscated reported plans to visit or work on a ranch or farm during their visit to the U.S.]] 

if they were to have questioned the terrorist that bombed the Twin Towers with jets, if they were to have questioned them at flight school in the USA, i am sure that they would have said they did not intend to visit the Twin Towers as a flying bomb either. what am i thinking, they probably did ask this? stupid me. 

[[In 1999 a small amount of non-species specific meat and offal was imported and a small amount of fetal bovine serum (FBS) was also imported. FBS is considered to have a relatively low risk of transmitting BSE.]] more of the USA infamous 'non-species coding system', wonder how many of these species are capable of carrying a TSE? 

snip... 

A total of 524,401 passengers arrived on direct flights to the U.S. from Israel in fiscal year 2000. This number does not include passengers who arrived in the U.S. from Israel via indirect flights. Under APHIS-PPQ's agricultural quarantine inspection monitoring, 284 air passengers from Israel were sampled for items of agricultural interest in fiscal year 2001. Seven of these passengers, or 2 percent, carried a total of 11 kg of meat items that could potentially harbor the pathogen that causes BSE. None of these passengers from whom meat items were confiscated reported plans to visit or work on a ranch or farm during their visit to the U.S. 



 MONDAY, FEBRUARY 04, 2019 

POLAND DETECTS BOVINE SPONGIFORM ENCEPHALOPATHY BSE TSE PRION 

Poland is Proof atypical BSE is NOT an old cow spontaneous disease...tss 



FRIDAY, FEBRUARY 01, 2019 

Poland Exported 5,500 Pounds of Meat From Sick Cows to EU, what about mad cow disease? 

Poland is Proof atypical BSE is NOT an old cow spontaneous disease...tss 



PRION 2018 CONFERENCE

P98 The agent of H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism transmits after oronasal challenge 

Greenlee JJ (1), Moore SJ (1), and West Greenlee MH (2) (1) United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, IA, United States (2) Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States. 

reading up on this study from Prion 2018 Conference, very important findings ;

***> This study demonstrates that the H-type BSE agent is transmissible by the oronasal route. 

***> These results reinforce the need for ongoing surveillance for classical and atypical BSE to minimize the risk of potentially infectious tissues entering the animal or human food chains.

PRION 2018 CONFERENCE ABSTRACT


WEDNESDAY, OCTOBER 24, 2018 

Experimental Infection of Cattle With a Novel Prion Derived From Atypical H-Type Bovine Spongiform Encephalopathy


Friday, December 14, 2012

DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced into Great Britain? A Qualitative Risk Assessment October 2012

snip.....

In the USA, under the Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. However, this recommendation is guidance and not a requirement by law.

Animals considered at high risk for CWD include:

1) animals from areas declared to be endemic for CWD and/or to be CWD eradication zones and

2) deer and elk that at some time during the 60-month period prior to slaughter were in a captive herd that contained a CWD-positive animal.

Therefore, in the USA, materials from cervids other than CWD positive animals may be used in animal feed and feed ingredients for non-ruminants.

The amount of animal PAP that is of deer and/or elk origin imported from the USA to GB can not be determined, however, as it is not specified in TRACES. It may constitute a small percentage of the 8412 kilos of non-fish origin processed animal proteins that were imported from US into GB in 2011.

Overall, therefore, it is considered there is a __greater than negligible risk___ that (nonruminant) animal feed and pet food containing deer and/or elk protein is imported into GB.

There is uncertainty associated with this estimate given the lack of data on the amount of deer and/or elk protein possibly being imported in these products.

snip.....

36% in 2007 (Almberg et al., 2011). In such areas, population declines of deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of Colorado, the prevalence can be as high as 30% (EFSA, 2011).

The clinical signs of CWD in affected adults are weight loss and behavioural changes that can span weeks or months (Williams, 2005). In addition, signs might include excessive salivation, behavioural alterations including a fixed stare and changes in interaction with other animals in the herd, and an altered stance (Williams, 2005). These signs are indistinguishable from cervids experimentally infected with bovine spongiform encephalopathy (BSE).

Given this, if CWD was to be introduced into countries with BSE such as GB, for example, infected deer populations would need to be tested to differentiate if they were infected with CWD or BSE to minimise the risk of BSE entering the human food-chain via affected venison.

snip.....

The rate of transmission of CWD has been reported to be as high as 30% and can approach 100% among captive animals in endemic areas (Safar et al., 2008).

snip.....

In summary, in endemic areas, there is a medium probability that the soil and surrounding environment is contaminated with CWD prions and in a bioavailable form. In rural areas where CWD has not been reported and deer are present, there is a greater than negligible risk the soil is contaminated with CWD prion.

snip.....

In summary, given the volume of tourists, hunters and servicemen moving between GB and North America, the probability of at least one person travelling to/from a CWD affected area and, in doing so, contaminating their clothing, footwear and/or equipment prior to arriving in GB is greater than negligible... For deer hunters, specifically, the risk is likely to be greater given the increased contact with deer and their environment. However, there is significant uncertainty associated with these estimates.

snip.....

Therefore, it is considered that farmed and park deer may have a higher probability of exposure to CWD transferred to the environment than wild deer given the restricted habitat range and higher frequency of contact with tourists and returning GB residents.

snip.....



TUESDAY, APRIL 18, 2017 

*** EXTREME USA FDA PART 589 TSE PRION FEED LOOP HOLE STILL EXIST, AND PRICE OF POKER GOES UP ***



***> Wednesday, January 23, 2019 

***> CFIA SFCR Guidance on Specified risk material (SRM) came into force on January 15, 2019 <***



Prion Conference 2018

O5 Prion Disease in Dromedary Camels 

Babelhadj B (1), Di Bari MA (2), Pirisinu L (2), Chiappini B (2), Gaouar SB (3), Riccardi G (2), Marcon S (2), Agrimi U (2), Nonno R (2), Vaccari G (2) (1) École Normale Supérieure Ouargla. Laboratoire de protection des écosystèmes en zones arides et semi arides University Kasdi Merbah Ouargla, Ouargla, Algeria; (2) Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy (3) University Abou Bekr Bélkaid, Tlemcen, Algeria. 

Prions are responsible for fatal and transmissible neurodegenerative diseases including CreutzfeldtJakob disease in humans, scrapie in small ruminants and bovine spongiform encephalopathy (BSE). Following the BSE epidemic and the demonstration of its zoonotic potential, general concerns have been raised on animal prions. 

Here we report the identification of a prion disease in dromedary camels (Camelus dromedarius) in Algeria and designate it as Camel Prion Disease (CPD). In the last years, neurological symptoms have been observed in adult male and female dromedaries presented for slaughter at the Ouargla abattoir. The symptoms include weight loss, behavioral abnormalities and neurological symptoms such as tremors, aggressiveness, hyper-reactivity, typical down and upwards movements of the head, hesitant and uncertain gait, ataxia of the hind limbs, occasional falls and difficult getting up. During 2015 and 2016, symptoms suggestive of prion disease were observed in 3.1% of 2259 dromedaries presented at ante-mortem examination. Laboratory diagnosis was obtained in three symptomatic dromedaries, sampled in 2016 and 2017, by the detection of typical neurodegeneration and disease-specific prion protein (PrPSc) in brain tissues. 

Histopathological examination revealed spongiform change, gliosis and neuronal loss preferentially in grey matter of subcortical brain areas. Abundant PrPSc deposition was detected in the same brain areas by immunohistochemistry and PET-blot. Western blot analysis confirmed the presence of PK-resistant PrPSc, whose N-terminal cleaved PK-resistant core was characterized by a mono-glycosylated dominant form and by a distinctive N-terminal cleavage, different from that observed in BSE and scrapie. 

PrPSc was also detected, by immunohistochemistry, in all sampled lymph nodes (cervical, prescapular and lumbar aortic) of the only animal from which they were collected. 

The PRNP sequence of the two animals for which frozen material was available, showed 100% nucleotide identity with the PRNP sequence already reported for dromedary camel. 

Overall, these data demonstrate the presence of a prion disease in dromedary camelswhose nature, origin and spread need further investigations. However, our preliminary observations on the rather high prevalence of symptomatic dromedaries and the involvement of lymphoid tissues, are consistent with CPD being an infectious disease. In conclusion, the emergence of a new prion disease in a livestock species of crucial importance for millions of people around the world, makes urgent to assess the risk for humans and to develop policies able to control the spread of the disease in animals and to minimize human exposure. 



CDC

New Outbreak of TSE Prion in NEW LIVESTOCK SPECIES

Mad Camel Disease

Volume 24, Number 6—June 2018 Research 

Prion Disease in Dromedary Camels, Algeria
Abstract

Prions cause fatal and transmissible neurodegenerative diseases, including Creutzfeldt-Jakob disease in humans, scrapie in small ruminants, and bovine spongiform encephalopathy (BSE). After the BSE epidemic, and the associated human infections, began in 1996 in the United Kingdom, general concerns have been raised about animal prions. We detected a prion disease in dromedary camels (Camelus dromedarius) in Algeria. Symptoms suggesting prion disease occurred in 3.1% of dromedaries brought for slaughter to the Ouargla abattoir in 2015–2016. We confirmed diagnosis by detecting pathognomonic neurodegeneration and disease-specific prion protein (PrPSc) in brain tissues from 3 symptomatic animals. Prion detection in lymphoid tissues is suggestive of the infectious nature of the disease. PrPSc biochemical characterization showed differences with BSE and scrapie. Our identification of this prion disease in a geographically widespread livestock species requires urgent enforcement of surveillance and assessment of the potential risks to human and animal health.

SNIP...

The possibility that dromedaries acquired the disease from eating prion-contaminated waste needs to be considered.
Tracing the origin of prion diseases is challenging. In the case of CPD, the traditional extensive and nomadic herding practices of dromedaries represent a formidable factor for accelerating the spread of the disease at long distances, making the path of its diffusion difficult to determine. Finally, the major import flows of live animals to Algeria from Niger, Mali, and Mauritania (27) should be investigated to trace the possible origin of CPD from other countries.
Camels are a vital animal species for millions of persons globally. The world camel population has a yearly growth rate of 2.1% (28). In 2014, the population was estimated at ≈28 million animals, but this number is probably underestimated.. Approximately 88% of camels are found in Africa, especially eastern Africa, and 12% are found in Asia. Official data reported 350,000 dromedaries in Algeria in 2014 (28).
On the basis of phenotypic traits and sociogeographic criteria, several dromedary populations have been suggested to exist in Algeria (29). However, recent genetic studies in Algeria and Egypt point to a weak differentiation of the dromedary population as a consequence of historical use as a cross-continental beast of burden along trans-Saharan caravan routes, coupled with traditional extensive/nomadic herding practices (30).
Such genetic homogeneity also might be reflected in PRNP. Studies on PRNP variability in camels are therefore warranted to explore the existence of genotypes resistant to CPD, which could represent an important tool for CPD management as it was for breeding programs for scrapie eradication in sheep.
In the past 10 years, the camel farming system has changed rapidly, with increasing setup of periurban dairy farms and dairy plants and diversification of camel products and market penetration (13). This evolution requires improved health standards for infectious diseases and, in light of CPD, for prion diseases.
The emergence of another prion disease in an animal species of crucial importance for millions of persons worldwide makes it necessary to assess the risk for humans and develop evidence-based policies to control and limit the spread of the disease in animals and minimize human exposure. The implementation of a surveillance system for prion diseases would be a first step to enable disease control and minimize human and animal exposure. Finally, the diagnostic capacity of prion diseases needs to be improved in all countries in Africa where dromedaries are part of the domestic livestock.


***> IMPORTS AND EXPORTS <***

***SEE MASSIVE AMOUNTS OF BANNED ANIMAL PROTEIN AKA MAD COW FEED IN COMMERCE USA DECADES AFTER POST BAN ***


cattle, pigs, sheep, cwd, tse, prion, oh my!

***> In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006). 

Sheep and cattle may be exposed to CWD via common grazing areas with affected deer but so far, appear to be poorly susceptible to mule deer CWD (Sigurdson, 2008). In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006). It is not known how susceptible humans are to CWD but given that the prion can be present in muscle, it is likely that humans have been exposed to the agent via consumption of venison (Sigurdson, 2008). Initial experimental research suggests that human susceptibility to CWD is low and there may be a robust species barrier for CWD transmission to humans (Sigurdson, 2008), however the risk appetite for a public health threat may still find this level unacceptable.



cwd scrapie pigs oral routes

***> However, at 51 months of incubation or greater, 5 animals were positive by one or more diagnostic methods. Furthermore, positive bioassay results were obtained from all inoculated groups (oral and intracranial; market weight and end of study) suggesting that swine are potential hosts for the agent of scrapie. <*** 

 >*** Although the current U.S. feed ban is based on keeping tissues from TSE infected cattle from contaminating animal feed, swine rations in the U.S. could contain animal derived components including materials from scrapie infected sheep and goats. These results indicating the susceptibility of pigs to sheep scrapie, coupled with the limitations of the current feed ban, indicates that a revision of the feed ban may be necessary to protect swine production and potentially human health. <*** 

***> Results: PrPSc was not detected by EIA and IHC in any RPLNs. All tonsils and MLNs were negative by IHC, though the MLN from one pig in the oral <6 5="" 6="" at="" by="" detected="" eia.="" examined="" group="" in="" intracranial="" least="" lymphoid="" month="" months="" of="" one="" pigs="" positive="" prpsc="" quic="" the="" tissues="" was="">6 months group, 5/6 pigs in the oral <6 4="" and="" group="" months="" oral="">6 months group. Overall, the MLN was positive in 14/19 (74%) of samples examined, the RPLN in 8/18 (44%), and the tonsil in 10/25 (40%). 

***> Conclusions: This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge. CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. 

This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease. 

Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains. 




Friday, December 14, 2012

DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced into Great Britain? A Qualitative Risk Assessment October 2012

snip.....

In the USA, under the Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. However, this recommendation is guidance and not a requirement by law.

Animals considered at high risk for CWD include:

1) animals from areas declared to be endemic for CWD and/or to be CWD eradication zones and

2) deer and elk that at some time during the 60-month period prior to slaughter were in a captive herd that contained a CWD-positive animal.

Therefore, in the USA, materials from cervids other than CWD positive animals may be used in animal feed and feed ingredients for non-ruminants.

The amount of animal PAP that is of deer and/or elk origin imported from the USA to GB can not be determined, however, as it is not specified in TRACES. It may constitute a small percentage of the 8412 kilos of non-fish origin processed animal proteins that were imported from US into GB in 2011.

Overall, therefore, it is considered there is a __greater than negligible risk___ that (nonruminant) animal feed and pet food containing deer and/or elk protein is imported into GB.

There is uncertainty associated with this estimate given the lack of data on the amount of deer and/or elk protein possibly being imported in these products.

snip.....

36% in 2007 (Almberg et al., 2011). In such areas, population declines of deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of Colorado, the prevalence can be as high as 30% (EFSA, 2011).

The clinical signs of CWD in affected adults are weight loss and behavioural changes that can span weeks or months (Williams, 2005). In addition, signs might include excessive salivation, behavioural alterations including a fixed stare and changes in interaction with other animals in the herd, and an altered stance (Williams, 2005). These signs are indistinguishable from cervids experimentally infected with bovine spongiform encephalopathy (BSE).

Given this, if CWD was to be introduced into countries with BSE such as GB, for example, infected deer populations would need to be tested to differentiate if they were infected with CWD or BSE to minimise the risk of BSE entering the human food-chain via affected venison.

snip.....

The rate of transmission of CWD has been reported to be as high as 30% and can approach 100% among captive animals in endemic areas (Safar et al., 2008).

snip.....

In summary, in endemic areas, there is a medium probability that the soil and surrounding environment is contaminated with CWD prions and in a bioavailable form. In rural areas where CWD has not been reported and deer are present, there is a greater than negligible risk the soil is contaminated with CWD prion.

snip.....

In summary, given the volume of tourists, hunters and servicemen moving between GB and North America, the probability of at least one person travelling to/from a CWD affected area and, in doing so, contaminating their clothing, footwear and/or equipment prior to arriving in GB is greater than negligible... For deer hunters, specifically, the risk is likely to be greater given the increased contact with deer and their environment. However, there is significant uncertainty associated with these estimates.

snip.....

Therefore, it is considered that farmed and park deer may have a higher probability of exposure to CWD transferred to the environment than wild deer given the restricted habitat range and higher frequency of contact with tourists and returning GB residents.

snip.....


TUESDAY, APRIL 18, 2017 

*** EXTREME USA FDA PART 589 TSE PRION FEED LOOP HOLE STILL EXIST, AND PRICE OF POKER GOES UP ***


SATURDAY, JUNE 1, 2019 

***> Traceability of animal protein byproducts in ruminants by multivariate analysis of isotope ratio mass spectrometry to prevent transmission of prion diseases


MONDAY, FEBRUARY 25, 2019 

MAD DOGS AND ENGLISHMEN BSE, SCRAPIE, CWD, CJD, TSE PRION A REVIEW 2019


ZOONOSIS OF SCRAPIE TSE PRION

O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations 

Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France 

Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases). 

Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods. 

*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period, 

***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014), 

***is the third potentially zoonotic PD (with BSE and L-type BSE), 

***thus questioning the origin of human sporadic cases. 

We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health. 

=============== 

***thus questioning the origin of human sporadic cases*** 

=============== 

***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals. 

============== 


***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. 

***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 

 
PRION 2016 TOKYO

Saturday, April 23, 2016

SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016

Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online

Taylor & Francis

Prion 2016 Animal Prion Disease Workshop Abstracts

WS-01: Prion diseases in animals and zoonotic potential

Juan Maria Torres a, Olivier Andreoletti b, J uan-Carlos Espinosa a. Vincent Beringue c. Patricia Aguilar a,

Natalia Fernandez-Borges a. and Alba Marin-Moreno a

"Centro de Investigacion en Sanidad Animal ( CISA-INIA ). Valdeolmos, Madrid. Spain; b UMR INRA -ENVT 1225 Interactions Holes Agents Pathogenes. ENVT. Toulouse. France: "UR892. Virologie lmmunologie MolécuIaires, Jouy-en-Josas. France

Dietary exposure to bovine spongiform encephalopathy (BSE) contaminated bovine tissues is considered as the origin of variant Creutzfeldt Jakob (vCJD) disease in human. To date, BSE agent is the only recognized zoonotic prion... Despite the variety of Transmissible Spongiform Encephalopathy (TSE) agents that have been circulating for centuries in farmed ruminants there is no apparent epidemiological link between exposure to ruminant products and the occurrence of other form of TSE in human like sporadic Creutzfeldt Jakob Disease (sCJD). However, the zoonotic potential of the diversity of circulating TSE agents has never been systematically assessed. The major issue in experimental assessment of TSEs zoonotic potential lies in the modeling of the ‘species barrier‘, the biological phenomenon that limits TSE agents’ propagation from a species to another. In the last decade, mice genetically engineered to express normal forms of the human prion protein has proved essential in studying human prions pathogenesis and modeling the capacity of TSEs to cross the human species barrier.

To assess the zoonotic potential of prions circulating in farmed ruminants, we study their transmission ability in transgenic mice expressing human PrPC (HuPrP-Tg). Two lines of mice expressing different forms of the human PrPC (129Met or 129Val) are used to determine the role of the Met129Val dimorphism in susceptibility/resistance to the different agents.

These transmission experiments confirm the ability of BSE prions to propagate in 129M- HuPrP-Tg mice and demonstrate that Met129 homozygotes may be susceptible to BSE in sheep or goat to a greater degree than the BSE agent in cattle and that these agents can convey molecular properties and neuropathological indistinguishable from vCJD. However homozygous 129V mice are resistant to all tested BSE derived prions independently of the originating species suggesting a higher transmission barrier for 129V-PrP variant.

Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. 

Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 

 
***> why do we not want to do TSE transmission studies on chimpanzees $

5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man. 

***> I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. 

***> Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.

snip...

R. BRADLEY



Title: Transmission of scrapie prions to primate after an extended silent incubation period) 

*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS. 

*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated. 

*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains. 


***> Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility. <***

Transmission of scrapie prions to primate after an extended silent incubation period 

Emmanuel E. Comoy, Jacqueline Mikol, Sophie Luccantoni-Freire, Evelyne Correia, Nathalie Lescoutra-Etchegaray, Valérie Durand, Capucine Dehen, Olivier Andreoletti, Cristina Casalone, Juergen A. Richt, Justin J. Greenlee, Thierry Baron, Sylvie L. Benestad, Paul Brown & Jean-Philippe Deslys Scientific Reports volume 5, Article number: 11573 (2015) | Download Citation

Abstract 

Classical bovine spongiform encephalopathy (c-BSE) is the only animal prion disease reputed to be zoonotic, causing variant Creutzfeldt-Jakob disease (vCJD) in humans and having guided protective measures for animal and human health against animal prion diseases. Recently, partial transmissions to humanized mice showed that the zoonotic potential of scrapie might be similar to c-BSE. We here report the direct transmission of a natural classical scrapie isolate to cynomolgus macaque, a highly relevant model for human prion diseases, after a 10-year silent incubation period, with features similar to those reported for human cases of sporadic CJD. Scrapie is thus actually transmissible to primates with incubation periods compatible with their life expectancy, although fourfold longer than BSE. Long-term experimental transmission studies are necessary to better assess the zoonotic potential of other prion diseases with high prevalence, notably Chronic Wasting Disease of deer and elk and atypical/Nor98 scrapie.

SNIP...

Discussion We describe the transmission of spongiform encephalopathy in a non-human primate inoculated 10 years earlier with a strain of sheep c-scrapie. Because of this extended incubation period in a facility in which other prion diseases are under study, we are obliged to consider two alternative possibilities that might explain its occurrence. We first considered the possibility of a sporadic origin (like CJD in humans). Such an event is extremely improbable because the inoculated animal was 14 years old when the clinical signs appeared, i.e. about 40% through the expected natural lifetime of this species, compared to a peak age incidence of 60–65 years in human sporadic CJD, or about 80% through their expected lifetimes. Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.

The second possibility is a laboratory cross-contamination. Three facts make this possibility equally unlikely. First, handling of specimens in our laboratory is performed with fastidious attention to the avoidance of any such cross-contamination. Second, no laboratory cross-contamination has ever been documented in other primate laboratories, including the NIH, even between infected and uninfected animals housed in the same or adjacent cages with daily intimate contact (P. Brown, personal communication). Third, the cerebral lesion profile is different from all the other prion diseases we have studied in this model19, with a correlation between cerebellar lesions (massive spongiform change of Purkinje cells, intense PrPres staining and reactive gliosis26) and ataxia. The iron deposits present in the globus pallidus are a non specific finding that have been reported previously in neurodegenerative diseases and aging27. Conversely, the thalamic lesion was reminiscent of a metabolic disease due to thiamine deficiency28 but blood thiamine levels were within normal limits (data not shown). The preferential distribution of spongiform change in cortex associated with a limited distribution in the brainstem is reminiscent of the lesion profile in MM2c and VV1 sCJD patients29, but interspecies comparison of lesion profiles should be interpreted with caution. It is of note that the same classical scrapie isolate induced TSE in C57Bl/6 mice with similar incubation periods and lesional profiles as a sample derived from a MM1 sCJD patient30.

We are therefore confident that the illness in this cynomolgus macaque represents a true transmission of a sheep c-scrapie isolate directly to an old-world monkey, which taxonomically resides in the primate subdivision (parvorder of catarrhini) that includes humans. With an homology of its PrP protein with humans of 96.4%31, cynomolgus macaque constitutes a highly relevant model for assessing zoonotic risk of prion diseases. Since our initial aim was to show the absence of transmission of scrapie to macaques in the worst-case scenario, we obtained materials from a flock of naturally-infected sheep, affecting animals with different genotypes32. This c-scrapie isolate exhibited complete transmission in ARQ/ARQ sheep (332 ± 56 days) and Tg338 transgenic mice expressing ovine VRQ/VRQ prion protein (220 ± 5 days) (O. Andreoletti, personal communication). From the standpoint of zoonotic risk, it is important to note that sheep with c-scrapie (including the isolate used in our study) have demonstrable infectivity throughout their lymphoreticular system early in the incubation period of the disease (3 months-old for all the lymphoid organs, and as early as 2 months-old in gut-associated lymph nodes)33. In addition, scrapie infectivity has been identified in blood34, milk35 and skeletal muscle36 from asymptomatic but scrapie infected small ruminants which implies a potential dietary exposure for consumers.

Two earlier studies have reported the occurrence of clinical TSE in cynomolgus macaques after exposures to scrapie isolates. In the first study, the “Compton” scrapie isolate (derived from an English sheep) and serially propagated for 9 passages in goats did not transmit TSE in cynomolgus macaque, rhesus macaque or chimpanzee within 7 years following intracerebral challenge1; conversely, after 8 supplementary passages in conventional mice, this “Compton” isolate induced TSE in a cynomolgus macaque 5 years after intracerebral challenge, but rhesus macaques and chimpanzee remained asymptomatic 8.5 years post-exposure8. However, multiple successive passages that are classically used to select laboratory-adapted prion strains can significantly modify the initial properties of a scrapie isolate, thus questioning the relevance of zoonotic potential for the initial sheep-derived isolate. The same isolate had also induced disease into squirrel monkeys (new-world monkey)9. A second historical observation reported that a cynomolgus macaque developed TSE 6 years post-inoculation with brain homogenate from a scrapie-infected Suffolk ewe (derived from USA), whereas a rhesus macaque and a chimpanzee exposed to the same inoculum remained healthy 9 years post-exposure1. This inoculum also induced TSE in squirrel monkeys after 4 passages in mice. Other scrapie transmission attempts in macaque failed but had more shorter periods of observation in comparison to the current study. Further, it is possible that there are differences in the zoonotic potential of different scrapie strains.

The most striking observation in our study is the extended incubation period of scrapie in the macaque model, which has several implications. Firstly, our observations constitute experimental evidence in favor of the zoonotic potential of c-scrapie, at least for this isolate that has been extensively studied32,33,34,35,36. The cross-species zoonotic ability of this isolate should be confirmed by performing duplicate intracerebral exposures and assessing the transmissibility by the oral route (a successful transmission of prion strains through the intracerebral route may not necessarily indicate the potential for oral transmission37). However, such confirmatory experiments may require more than one decade, which is hardly compatible with current general management and support of scientific projects; thus this study should be rather considered as a case report.

Secondly, transmission of c-BSE to primates occurred within 8 years post exposure for the lowest doses able to transmit the disease (the survival period after inoculation is inversely proportional to the initial amount of infectious inoculum). The occurrence of scrapie 10 years after exposure to a high dose (25 mg) of scrapie-infected sheep brain suggests that the macaque has a higher species barrier for sheep c-scrapie than c-BSE, although it is notable that previous studies based on in vitro conversion of PrP suggested that BSE and scrapie prions would have a similar conversion potential for human PrP38.

Thirdly, prion diseases typically have longer incubation periods after oral exposure than after intracerebral inoculations: since humans can develop Kuru 47 years after oral exposure39, an incubation time of several decades after oral exposure to scrapie would therefore be expected, leading the disease to occur in older adults, i.e. the peak age for cases considered to be sporadic disease, and making a distinction between scrapie-associated and truly sporadic disease extremely difficult to appreciate.

Fourthly, epidemiologic evidence is necessary to confirm the zoonotic potential of an animal disease suggested by experimental studies. A relatively short incubation period and a peculiar epidemiological situation (e.g., all the first vCJD cases occurring in the country with the most important ongoing c-BSE epizootic) led to a high degree of suspicion that c-BSE was the cause of vCJD. Sporadic CJD are considered spontaneous diseases with an almost stable and constant worldwide prevalence (0.5–2 cases per million inhabitants per year), and previous epidemiological studies were unable to draw a link between sCJD and classical scrapie6,7,40,41, even though external causes were hypothesized to explain the occurrence of some sCJD clusters42,43,44. However, extended incubation periods exceeding several decades would impair the predictive values of epidemiological surveillance for prion diseases, already weakened by a limited prevalence of prion diseases and the multiplicity of isolates gathered under the phenotypes of “scrapie” and “sporadic CJD”.

Fifthly, considering this 10 year-long incubation period, together with both laboratory and epidemiological evidence of decade or longer intervals between infection and clinical onset of disease, no premature conclusions should be drawn from negative transmission studies in cynomolgus macaques with less than a decade of observation, as in the aforementioned historical transmission studies of scrapie to primates1,8,9. Our observations and those of others45,46 to date are unable to provide definitive evidence regarding the zoonotic potential of CWD, atypical/Nor98 scrapie or H-type BSE. The extended incubation period of the scrapie-affected macaque in the current study also underscores the limitations of rodent models expressing human PrP for assessing the zoonotic potential of some prion diseases since their lifespan remains limited to approximately two years21,47,48. This point is illustrated by the fact that the recently reported transmission of scrapie to humanized mice was not associated with clinical signs for up to 750 days and occurred in an extreme minority of mice with only a marginal increase in attack rate upon second passage13. The low attack rate in these studies is certainly linked to the limited lifespan of mice compared to the very long periods of observation necessary to demonstrate the development of scrapie. Alternatively, one could estimate that a successful second passage is the result of strain adaptation to the species barrier, thus poorly relevant of the real zoonotic potential of the original scrapie isolate of sheep origin49. The development of scrapie in this primate after an incubation period compatible with its lifespan complements the study conducted in transgenic (humanized) mice; taken together these studies suggest that some isolates of sheep scrapie can promote misfolding of the human prion protein and that scrapie can develop within the lifespan of some primate species.

In addition to previous studies on scrapie transmission to primate1,8,9 and the recently published study on transgenic humanized mice13, our results constitute new evidence for recommending that the potential risk of scrapie for human health should not be dismissed. Indeed, human PrP transgenic mice and primates are the most relevant models for investigating the human transmission barrier. To what extent such models are informative for measuring the zoonotic potential of an animal TSE under field exposure conditions is unknown. During the past decades, many protective measures have been successfully implemented to protect cattle from the spread of c-BSE, and some of these measures have been extended to sheep and goats to protect from scrapie according to the principle of precaution. Since cases of c-BSE have greatly reduced in number, those protective measures are currently being challenged and relaxed in the absence of other known zoonotic animal prion disease. We recommend that risk managers should be aware of the long term potential risk to human health of at least certain scrapie isolates, notably for lymphotropic strains like the classical scrapie strain used in the current study. Relatively high amounts of infectivity in peripheral lymphoid organs in animals infected with these strains could lead to contamination of food products produced for human consumption. Efforts should also be maintained to further assess the zoonotic potential of other animal prion strains in long-term studies, notably lymphotropic strains with high prevalence like CWD, which is spreading across North America, and atypical/Nor98 scrapie (Nor98)50 that was first detected in the past two decades and now represents approximately half of all reported cases of prion diseases in small ruminants worldwide, including territories previously considered as scrapie free... Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.



Chronic Wasting Disease CWD TSE Prion

Cervid to human prion transmission 

Kong, Qingzhong Case Western Reserve University, Cleveland, OH, United States

We hypothesize that: 

(1) The classic CWD prion strain can infect humans at low levels in the brain and peripheral lymphoid tissues; 

(2) The cervid-to-human transmission barrier is dependent on the cervid prion strain and influenced by the host (human) prion protein (PrP) primary sequence; 

(3) Reliable essays can be established to detect CWD infection in humans; and 

(4) CWD transmission to humans has already occurred. We will test these hypotheses in 4 Aims using transgenic (Tg) mouse models and complementary in vitro approaches. 


ZOONOTIC CHRONIC WASTING DISEASE CWD TSE PRION UPDATE

here is the latest;

PRION 2018 CONFERENCE 

Oral transmission of CWD into Cynomolgus macaques: signs of atypical disease, prion conversion and infectivity in macaques and bio-assayed transgenic mice 

Hermann M. Schatzl, Samia Hannaoui, Yo-Ching Cheng, Sabine Gilch (Calgary Prion Research Unit, University of Calgary, Calgary, Canada) Michael Beekes (RKI Berlin), Walter Schulz-Schaeffer (University of Homburg/Saar, Germany), Christiane Stahl-Hennig (German Primate Center) & Stefanie Czub (CFIA Lethbridge). 

To date, BSE is the only example of interspecies transmission of an animal prion disease into humans. The potential zoonotic transmission of CWD is an alarming issue and was addressed by many groups using a variety of in vitro and in vivo experimental systems. Evidence from these studies indicated a substantial, if not absolute, species barrier, aligning with the absence of epidemiological evidence suggesting transmission into humans. Studies in non-human primates were not conclusive so far, with oral transmission into new-world monkeys and no transmission into old-world monkeys. Our consortium has challenged 18 Cynomolgus macaques with characterized CWD material, focusing on oral transmission with muscle tissue. Some macaques have orally received a total of 5 kg of muscle material over a period of 2 years. 

After 5-7 years of incubation time some animals showed clinical symptoms indicative of prion disease, and prion neuropathology and PrPSc deposition were detected in spinal cord and brain of some euthanized animals. PrPSc in immunoblot was weakly detected in some spinal cord materials and various tissues tested positive in RT-QuIC, including lymph node and spleen homogenates. To prove prion infectivity in the macaque tissues, we have intracerebrally inoculated 2 lines of transgenic mice, expressing either elk or human PrP. At least 3 TgElk mice, receiving tissues from 2 different macaques, showed clinical signs of a progressive prion disease and brains were positive in immunoblot and RT-QuIC. Tissues (brain, spinal cord and spleen) from these and pre-clinical mice are currently tested using various read-outs and by second passage in mice. Transgenic mice expressing human PrP were so far negative for clear clinical prion disease (some mice >300 days p.i.). In parallel, the same macaque materials are inoculated into bank voles. 

Taken together, there is strong evidence of transmissibility of CWD orally into macaques and from macaque tissues into transgenic mouse models, although with an incomplete attack rate. 

The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology. 
Our ongoing studies will show whether the transmission of CWD into macaques and passage in transgenic mice represents a form of non-adaptive prion amplification, and whether macaque-adapted prions have the potential to infect mice expressing human PrP. 

The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD.. 

***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD. <*** 

https://prion2018.org/

READING OVER THE PRION 2018 ABSTRACT BOOK, LOOKS LIKE THEY FOUND THAT from this study ; 

P190 Human prion disease mortality rates by occurrence of chronic wasting disease in freeranging cervids, United States 

Abrams JY (1), Maddox RA (1), Schonberger LB (1), Person MK (1), Appleby BS (2), Belay ED (1) (1) Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA, USA (2) Case Western Reserve University, National Prion Disease Pathology Surveillance Center (NPDPSC), Cleveland, OH, USA.. 

SEEMS THAT THEY FOUND Highly endemic states had a higher rate of prion disease mortality compared to non-CWD 
states. 

AND ANOTHER STUDY; 

P172 Peripheral Neuropathy in Patients with Prion Disease 

Wang H(1), Cohen M(1), Appleby BS(1,2) (1) University Hospitals Cleveland Medical Center, Cleveland, Ohio (2) National Prion Disease Pathology Surveillance Center, Cleveland, Ohio.. 

IN THIS STUDY, THERE WERE autopsy-proven prion cases from the National Prion Disease Pathology Surveillance Center that were diagnosed between September 2016 to March 2017, 

AND 

included 104 patients. SEEMS THEY FOUND THAT The most common sCJD subtype was MV1-2 (30%), followed by MM1-2 (20%), 

AND 

THAT The Majority of cases were male (60%), AND half of them had exposure to wild game. 

snip...

see more on Prion 2017 Macaque study from Prion 2017 Conference and other updated science on cwd tse prion zoonosis below...terry 

https://prion2018.org/wp-content/uploads/2018/05/program.pdf 

https://prion2018.org/

THURSDAY, OCTOBER 04, 2018 

Cervid to human prion transmission 5R01NS088604-04 Update 

http://grantome.com/grant/NIH/R01-NS088604-04 

http://chronic-wasting-disease.blogspot.com/2018/10/cervid-to-human-prion-transmission.html

snip...full text;

SATURDAY, FEBRUARY 09, 2019 

Experts: Yes, chronic wasting disease in deer is a public health issue — for people


SUNDAY, OCTOBER 21, 2018 

Surveillance for variant CJD: should more children with neurodegenerative diseases have autopsies? Singeltary Review


WEDNESDAY, OCTOBER 17, 2018 

PRICE OF TSE PRION POKER GOES UP spectrum of human prion diseases may extend the current field and may notably include spinal cord diseases


FRIDAY, OCTOBER 05, 2018

More Politicians and Very Young People Struck Down With Creutzfeldt Jakob Disease CJD mad cow type TSE Prion USA


Sunday, September 16, 2018

Mother to Offspring Transmission of TSE PRION DISEASE and risk factors there from


Sunday, September 16, 2018

Mother to Offspring Transmission of TSE PRION DISEASE and risk factors there from WEDNESDAY, SEPTEMBER 05, 2018 

*** Edmonton woman one of the youngest diagnosed with CJD at 35 years old and pregnant


MONDAY, AUGUST 21, 2017 

Similarities of Variant Creutzfeldt-Jakob Disease Strain in Mother and Son in Spain to UK Reference Case


WEDNESDAY, DECEMBER 30, 2009 

Is there evidence of vertical transmission of variant CJD ?

 
Volume 2: Science 

4. The link between BSE and vCJD 

Summary 

4.29 The evidence discussed above that vCJD is caused by BSE seems overwhelming. Uncertainties exist about the cause of CJD in farmers, their wives and in several abattoir workers. It seems that farmers at least might be at higher risk than others in the general population. 1 Increased ascertainment (ie, increased identification of cases as a result of greater awareness of the condition) seems unlikely, as other groups exposed to risk, such as butchers and veterinarians, do not appear to have been affected. 

***The CJD in farmers seems to be similar to other sporadic CJD in age of onset, in respect to glycosylation patterns, and in strain-typing in experimental mice. 

***Some farmers are heterozygous for the methionine/valine variant at codon 129, and their lymphoreticular system (LRS) does not contain the high levels of PrPSc found in vCJD. 

*** It remains a remote possibility that when older people contract CJD from BSE the resulting phenotype is like sporadic CJD and is distinct from the vCJD phenotype in younger people.

BSEINQUIRY

***>Some farmers are heterozygous for the methionine/valine variant at codon 129, and their lymphoreticular system (LRS) does not contain the high levels of PrPSc found in vCJD.<***

SATURDAY, JUNE 23, 2018

***> Diagnosis of Methionine/Valine Variant Creutzfeldt-Jakob Disease by Protein Misfolding Cyclic Amplification

Volume 24, Number 7—July 2018


WEDNESDAY, JUNE 05, 2019 

Alberta mom who died shortly after giving birth from CJD TSE Prion donates brain, placenta to research


Terry S. Singeltary Sr.